Normalized defining polynomial
\( x^{20} - 3 x^{18} - 139 x^{16} - 156 x^{14} + 1424 x^{12} - 132 x^{10} - 2468 x^{8} + 720 x^{6} + 736 x^{4} - 240 x^{2} + 16 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17031712842465295728640000000000=2^{32}\cdot 5^{10}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{16} a^{12} - \frac{1}{4} a^{11} - \frac{3}{16} a^{10} - \frac{1}{4} a^{9} + \frac{3}{16} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{16} a^{13} - \frac{3}{16} a^{11} + \frac{3}{16} a^{9} + \frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{14} - \frac{1}{4} a^{11} + \frac{1}{8} a^{10} - \frac{1}{4} a^{9} + \frac{3}{16} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{13} - \frac{3}{32} a^{11} - \frac{1}{4} a^{10} - \frac{3}{16} a^{7} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a$, $\frac{1}{160} a^{16} + \frac{1}{160} a^{14} + \frac{1}{160} a^{12} + \frac{3}{20} a^{10} - \frac{1}{4} a^{9} - \frac{1}{40} a^{8} - \frac{1}{4} a^{7} + \frac{1}{10} a^{6} - \frac{1}{4} a^{5} - \frac{3}{10} a^{4} + \frac{3}{20} a^{2} - \frac{1}{2} a - \frac{7}{20}$, $\frac{1}{160} a^{17} + \frac{1}{160} a^{15} + \frac{1}{160} a^{13} + \frac{3}{20} a^{11} - \frac{1}{4} a^{10} - \frac{1}{40} a^{9} - \frac{1}{4} a^{8} + \frac{1}{10} a^{7} - \frac{1}{4} a^{6} - \frac{3}{10} a^{5} + \frac{3}{20} a^{3} - \frac{1}{2} a^{2} - \frac{7}{20} a$, $\frac{1}{298831020320} a^{18} - \frac{404761153}{298831020320} a^{16} + \frac{524512007}{298831020320} a^{14} + \frac{218372671}{29883102032} a^{12} - \frac{1}{4} a^{11} - \frac{1166532869}{14941551016} a^{10} - \frac{1}{4} a^{9} + \frac{225278303}{1334067055} a^{8} - \frac{1}{4} a^{7} - \frac{2225608771}{9338469385} a^{6} - \frac{11904948793}{37353877540} a^{4} - \frac{1}{2} a^{3} - \frac{15264633409}{37353877540} a^{2} + \frac{4202088119}{18676938770}$, $\frac{1}{597662040640} a^{19} - \frac{404761153}{597662040640} a^{17} + \frac{524512007}{597662040640} a^{15} + \frac{218372671}{59766204064} a^{13} + \frac{6304242639}{29883102032} a^{11} + \frac{225278303}{2668134110} a^{9} + \frac{4887251843}{37353877540} a^{7} + \frac{6771989977}{74707755080} a^{5} - \frac{15264633409}{74707755080} a^{3} - \frac{14474850651}{37353877540} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 769493539.25 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1920 |
| The 18 conjugacy class representatives for t20n226 |
| Character table for t20n226 |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.5745920.1, 10.6.4126949580800000.1, 10.6.33015596646400.1, 10.10.4126949580800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.8.16.8 | $x^{8} + 8 x^{5} + 12$ | $4$ | $2$ | $16$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.8.16.8 | $x^{8} + 8 x^{5} + 12$ | $4$ | $2$ | $16$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $67$ | 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.6.4.1 | $x^{6} + 2345 x^{3} + 7756992$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 67.6.4.1 | $x^{6} + 2345 x^{3} + 7756992$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |