Normalized defining polynomial
\( x^{20} - 4 x^{19} - 14 x^{18} + 96 x^{17} - 44 x^{16} - 716 x^{15} + 1461 x^{14} + 1274 x^{13} - 6892 x^{12} + 4206 x^{11} + 9489 x^{10} - 11622 x^{9} - 3572 x^{8} + 6582 x^{7} + 993 x^{6} + 164 x^{5} - 1534 x^{4} + 90 x^{3} + 580 x^{2} - 50 x - 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1697562448531136375219997900800=2^{20}\cdot 5^{2}\cdot 36497^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{25} a^{18} + \frac{11}{25} a^{17} + \frac{11}{25} a^{16} - \frac{4}{25} a^{15} + \frac{6}{25} a^{14} + \frac{9}{25} a^{13} + \frac{6}{25} a^{12} + \frac{4}{25} a^{11} + \frac{3}{25} a^{10} - \frac{9}{25} a^{9} + \frac{9}{25} a^{8} - \frac{2}{25} a^{7} - \frac{12}{25} a^{6} + \frac{7}{25} a^{5} + \frac{3}{25} a^{4} + \frac{4}{25} a^{3} + \frac{6}{25} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{2528203228076948964123018278876025} a^{19} + \frac{23450428480147382869919222589208}{2528203228076948964123018278876025} a^{18} + \frac{104077693389879089542267784881876}{842734409358982988041006092958675} a^{17} - \frac{351652356159815302800441799378104}{842734409358982988041006092958675} a^{16} + \frac{252718124755865635433022480243118}{2528203228076948964123018278876025} a^{15} - \frac{90968015520939083061203099378928}{842734409358982988041006092958675} a^{14} - \frac{42375341842198223145687890495032}{842734409358982988041006092958675} a^{13} + \frac{547081760961905435938813451610011}{2528203228076948964123018278876025} a^{12} + \frac{369435200283394683091902957018672}{842734409358982988041006092958675} a^{11} + \frac{356334157801155462565614651691819}{842734409358982988041006092958675} a^{10} - \frac{376096459854692546915484561886538}{842734409358982988041006092958675} a^{9} + \frac{148662646976732749435443588979757}{842734409358982988041006092958675} a^{8} + \frac{933973521008671822845954777516694}{2528203228076948964123018278876025} a^{7} - \frac{873586929958772263869703371450607}{2528203228076948964123018278876025} a^{6} + \frac{1250422254413242592382946755310957}{2528203228076948964123018278876025} a^{5} - \frac{84860603335355022593120349057496}{505640645615389792824603655775205} a^{4} - \frac{1089120217070365336769263195037006}{2528203228076948964123018278876025} a^{3} - \frac{1132685361531909689598775734231523}{2528203228076948964123018278876025} a^{2} - \frac{5518513635007986187174072528829}{505640645615389792824603655775205} a + \frac{196176857150057433816539225378701}{505640645615389792824603655775205}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 75262087.2925 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n989 are not computed |
| Character table for t20n989 is not computed |
Intermediate fields
| 5.5.36497.1, 10.8.1363999753216.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | $16{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 36497 | Data not computed | ||||||