Normalized defining polynomial
\( x^{20} - 3 x^{19} - 19 x^{18} + 51 x^{17} + 135 x^{16} - 248 x^{15} - 668 x^{14} + 432 x^{13} + 2098 x^{12} + 926 x^{11} - 3514 x^{10} - 6670 x^{9} + 750 x^{8} + 15800 x^{7} + 9300 x^{6} - 20000 x^{5} - 17875 x^{4} + 13125 x^{3} + 13125 x^{2} - 3125 x - 3125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(160660135384776665098240000000000=2^{20}\cdot 5^{10}\cdot 13^{4}\cdot 29^{6}\cdot 31^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{20} a^{12} + \frac{1}{10} a^{11} + \frac{1}{20} a^{10} - \frac{1}{5} a^{9} - \frac{1}{4} a^{8} + \frac{7}{20} a^{7} - \frac{3}{20} a^{6} + \frac{7}{20} a^{5} - \frac{1}{10} a^{4} + \frac{1}{20} a^{3} - \frac{1}{5} a^{2} - \frac{1}{4} a$, $\frac{1}{20} a^{13} + \frac{1}{10} a^{11} + \frac{1}{5} a^{10} - \frac{1}{10} a^{9} - \frac{3}{20} a^{8} - \frac{1}{10} a^{7} + \frac{2}{5} a^{6} - \frac{1}{20} a^{5} - \frac{1}{2} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{200} a^{14} - \frac{3}{200} a^{13} - \frac{1}{50} a^{12} + \frac{3}{100} a^{11} - \frac{33}{200} a^{9} - \frac{43}{200} a^{8} + \frac{3}{50} a^{7} + \frac{53}{200} a^{6} + \frac{31}{200} a^{5} - \frac{47}{100} a^{4} + \frac{7}{20} a^{3} - \frac{1}{20} a^{2} - \frac{3}{8} a + \frac{1}{8}$, $\frac{1}{200} a^{15} - \frac{3}{200} a^{13} + \frac{1}{50} a^{12} + \frac{1}{25} a^{11} + \frac{17}{200} a^{10} + \frac{6}{25} a^{9} + \frac{3}{200} a^{8} - \frac{11}{200} a^{7} - \frac{1}{20} a^{6} + \frac{9}{200} a^{5} + \frac{9}{100} a^{4} - \frac{1}{4} a^{3} + \frac{17}{40} a^{2} - \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{1000} a^{16} + \frac{1}{500} a^{15} + \frac{1}{1000} a^{14} - \frac{3}{125} a^{13} - \frac{113}{1000} a^{11} - \frac{79}{500} a^{10} - \frac{63}{1000} a^{9} - \frac{247}{1000} a^{8} + \frac{43}{500} a^{7} + \frac{471}{1000} a^{6} - \frac{7}{25} a^{5} + \frac{9}{25} a^{4} - \frac{3}{8} a^{3} - \frac{1}{20} a^{2} + \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{2000} a^{17} + \frac{1}{1000} a^{15} + \frac{1}{500} a^{14} + \frac{43}{2000} a^{13} + \frac{37}{2000} a^{12} - \frac{3}{500} a^{11} + \frac{61}{250} a^{10} - \frac{71}{2000} a^{9} + \frac{51}{400} a^{8} + \frac{327}{1000} a^{7} - \frac{79}{250} a^{6} + \frac{109}{400} a^{5} - \frac{13}{80} a^{4} + \frac{7}{20} a^{3} + \frac{9}{20} a^{2} - \frac{3}{8} a + \frac{5}{16}$, $\frac{1}{10000} a^{18} + \frac{1}{5000} a^{17} - \frac{1}{2500} a^{16} + \frac{1}{625} a^{15} - \frac{1}{2000} a^{14} - \frac{143}{10000} a^{13} + \frac{21}{5000} a^{12} - \frac{299}{5000} a^{11} + \frac{893}{10000} a^{10} + \frac{2301}{10000} a^{9} - \frac{134}{625} a^{8} + \frac{28}{125} a^{7} - \frac{899}{2000} a^{6} + \frac{59}{400} a^{5} + \frac{71}{200} a^{4} + \frac{3}{8} a^{3} - \frac{13}{40} a^{2} + \frac{5}{16} a - \frac{1}{4}$, $\frac{1}{189638690000} a^{19} + \frac{7664703}{189638690000} a^{18} + \frac{18357793}{189638690000} a^{17} + \frac{25944121}{94819345000} a^{16} - \frac{8658097}{5125370000} a^{15} - \frac{7166561}{23704836250} a^{14} - \frac{335243159}{47409672500} a^{13} + \frac{2764472659}{189638690000} a^{12} - \frac{1450604167}{37927738000} a^{11} - \frac{2938193546}{11852418125} a^{10} - \frac{845880933}{11852418125} a^{9} - \frac{21882458989}{189638690000} a^{8} + \frac{16675446581}{37927738000} a^{7} - \frac{1147589186}{2370483625} a^{6} - \frac{219403989}{1896386900} a^{5} - \frac{2256520847}{7585547600} a^{4} - \frac{219733401}{758554760} a^{3} + \frac{575777933}{1517109520} a^{2} + \frac{59842223}{303421904} a - \frac{23311225}{303421904}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1609341389.48 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3686400 |
| The 114 conjugacy class representatives for t20n1013 are not computed |
| Character table for t20n1013 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.109268775200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $29$ | 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 29.5.0.1 | $x^{5} - x + 11$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 29.5.0.1 | $x^{5} - x + 11$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 29.6.4.1 | $x^{6} + 232 x^{3} + 22707$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.6.4.3 | $x^{6} + 713 x^{3} + 138384$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |