Normalized defining polynomial
\( x^{20} - 44 x^{18} - 2 x^{17} + 647 x^{16} + 472 x^{15} - 4513 x^{14} - 6682 x^{13} + 13040 x^{12} + 30916 x^{11} + 637 x^{10} - 41708 x^{9} - 18688 x^{8} - 39492 x^{7} - 27384 x^{6} + 75968 x^{5} + 40636 x^{4} - 32512 x^{3} - 12576 x^{2} + 2816 x - 64 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16060561821304241463001418628595712=2^{34}\cdot 2657^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 2657$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{13} + \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{3}{8} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{704} a^{18} - \frac{1}{16} a^{17} + \frac{3}{88} a^{16} - \frac{1}{352} a^{15} + \frac{79}{704} a^{14} + \frac{7}{176} a^{13} - \frac{21}{704} a^{12} - \frac{79}{352} a^{11} + \frac{21}{176} a^{10} + \frac{27}{176} a^{9} + \frac{13}{704} a^{8} - \frac{1}{8} a^{7} - \frac{51}{176} a^{6} - \frac{17}{176} a^{5} + \frac{13}{88} a^{4} - \frac{7}{44} a^{3} + \frac{47}{176} a^{2} + \frac{1}{4} a + \frac{13}{44}$, $\frac{1}{58345022722925180451247059026776533158528} a^{19} + \frac{9528571868845678327219930488095449301}{29172511361462590225623529513388266579264} a^{18} - \frac{76091096429487166444226230516095159337}{1823281960091411889101470594586766661204} a^{17} + \frac{1846024459777923733850443227724627330335}{29172511361462590225623529513388266579264} a^{16} - \frac{5127251701640516243225625336070884160333}{58345022722925180451247059026776533158528} a^{15} - \frac{2581070906698178035750316141539991159421}{29172511361462590225623529513388266579264} a^{14} - \frac{5579563264635058881856362131303860534125}{58345022722925180451247059026776533158528} a^{13} + \frac{64584949367933167770862672068890342387}{1326023243702845010255614977881284844512} a^{12} + \frac{480655451678962676051922090961811832709}{3646563920182823778202941189173533322408} a^{11} + \frac{2753346805967867940206271375711747113797}{14586255680731295112811764756694133289632} a^{10} + \frac{1949412454889597160358565780266851456613}{58345022722925180451247059026776533158528} a^{9} + \frac{9511144595055836983748942666271457907635}{29172511361462590225623529513388266579264} a^{8} - \frac{1124784115307056067124388506614604878087}{14586255680731295112811764756694133289632} a^{7} + \frac{3830377660037742048385510754859481427905}{14586255680731295112811764756694133289632} a^{6} + \frac{81537686134278563351038464831682381597}{3646563920182823778202941189173533322408} a^{5} - \frac{229226125288781699883422616548331858679}{911640980045705944550735297293383330602} a^{4} + \frac{4882259288262689714876978506118311208015}{14586255680731295112811764756694133289632} a^{3} + \frac{678653466054371099102651342534418879323}{7293127840365647556405882378347066644816} a^{2} - \frac{950304678488306783726293757305614659845}{3646563920182823778202941189173533322408} a - \frac{266716688582304817103138632745513056577}{1823281960091411889101470594586766661204}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44690399614.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 28800 |
| The 41 conjugacy class representatives for t20n547 |
| Character table for t20n547 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.170048.1, 10.6.925322313728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2657 | Data not computed | ||||||