Normalized defining polynomial
\( x^{20} - 2 x^{19} - 8 x^{18} + 26 x^{17} - 30 x^{16} - 14 x^{15} + 99 x^{14} - 110 x^{13} + 36 x^{12} + 202 x^{11} - 195 x^{10} - 202 x^{9} + 36 x^{8} + 110 x^{7} + 99 x^{6} + 14 x^{5} - 30 x^{4} - 26 x^{3} - 8 x^{2} + 2 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15831129474510904002158875449=3^{10}\cdot 401^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{11} + \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{15} + \frac{1}{6} a^{10} - \frac{1}{2} a^{9} + \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3}$, $\frac{1}{18} a^{16} + \frac{1}{18} a^{15} - \frac{1}{18} a^{14} + \frac{1}{18} a^{12} - \frac{1}{6} a^{11} - \frac{2}{9} a^{10} - \frac{4}{9} a^{9} - \frac{5}{18} a^{8} + \frac{5}{18} a^{7} - \frac{7}{18} a^{6} + \frac{1}{6} a^{5} + \frac{2}{9} a^{4} + \frac{1}{6} a^{3} - \frac{2}{9} a^{2} - \frac{7}{18} a - \frac{4}{9}$, $\frac{1}{18} a^{17} + \frac{1}{18} a^{15} + \frac{1}{18} a^{14} + \frac{1}{18} a^{13} - \frac{1}{18} a^{12} + \frac{1}{9} a^{11} - \frac{1}{18} a^{10} - \frac{1}{6} a^{9} + \frac{2}{9} a^{8} - \frac{1}{3} a^{7} + \frac{1}{18} a^{6} + \frac{2}{9} a^{5} + \frac{1}{9} a^{4} - \frac{7}{18} a^{3} - \frac{1}{2} a^{2} - \frac{2}{9} a - \frac{2}{9}$, $\frac{1}{1564218} a^{18} + \frac{20651}{782109} a^{17} + \frac{7034}{260703} a^{16} - \frac{57292}{782109} a^{15} - \frac{5939}{86901} a^{14} - \frac{1129}{173802} a^{13} + \frac{36295}{521406} a^{12} + \frac{75217}{1564218} a^{11} + \frac{12373}{260703} a^{10} - \frac{89548}{260703} a^{9} - \frac{70307}{260703} a^{8} - \frac{388255}{1564218} a^{7} + \frac{6030}{28967} a^{6} - \frac{16177}{260703} a^{5} - \frac{40117}{260703} a^{4} - \frac{664957}{1564218} a^{3} + \frac{79867}{260703} a^{2} - \frac{124184}{782109} a - \frac{57935}{1564218}$, $\frac{1}{1564218} a^{19} - \frac{33271}{1564218} a^{17} + \frac{4934}{782109} a^{16} + \frac{73709}{1564218} a^{15} + \frac{12856}{260703} a^{14} + \frac{15559}{521406} a^{13} - \frac{26602}{782109} a^{12} + \frac{259355}{1564218} a^{11} + \frac{93943}{521406} a^{10} + \frac{14093}{521406} a^{9} + \frac{443747}{1564218} a^{8} - \frac{763811}{1564218} a^{7} - \frac{24587}{57934} a^{6} - \frac{24001}{173802} a^{5} - \frac{202325}{782109} a^{4} + \frac{775681}{1564218} a^{3} + \frac{409289}{1564218} a^{2} - \frac{8771}{782109} a + \frac{12335}{1564218}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7444020.83455 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T87):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| 5.5.160801.1, 10.6.2094413889681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||