Normalized defining polynomial
\( x^{20} - 68 x^{18} + 946 x^{16} + 15060 x^{14} - 412215 x^{12} + 2198310 x^{10} + 3630180 x^{8} - 30380910 x^{6} - 44084680 x^{4} + 14024500 x^{2} + 3125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1573698888766283323386134528000000000000000=2^{30}\cdot 5^{15}\cdot 6029^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4}$, $\frac{1}{20} a^{16} - \frac{3}{20} a^{14} + \frac{1}{20} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{100} a^{17} + \frac{7}{100} a^{15} + \frac{21}{100} a^{13} - \frac{1}{4} a^{12} - \frac{3}{20} a^{11} - \frac{2}{5} a^{9} - \frac{1}{4} a^{8} + \frac{7}{20} a^{7} + \frac{1}{20} a^{5} - \frac{1}{10} a^{3} - \frac{1}{4} a^{2} - \frac{3}{10} a - \frac{1}{2}$, $\frac{1}{635160697928307458569200827491991500} a^{18} - \frac{2572420949227704174264245108622317}{158790174482076864642300206872997875} a^{16} + \frac{3360398800767626057530696930676574}{158790174482076864642300206872997875} a^{14} - \frac{1}{4} a^{13} - \frac{12728376597638680570004586367253389}{63516069792830745856920082749199150} a^{12} - \frac{1}{4} a^{11} - \frac{6440490424857021459363035179629643}{127032139585661491713840165498398300} a^{10} + \frac{1}{4} a^{9} + \frac{17850157362619347591098713305001887}{127032139585661491713840165498398300} a^{8} - \frac{1}{4} a^{7} - \frac{14786507798055425540216225295795516}{31758034896415372928460041374599575} a^{6} - \frac{1}{2} a^{5} + \frac{22423380428200242212812719263109643}{127032139585661491713840165498398300} a^{4} - \frac{1}{4} a^{3} - \frac{10019963269288496907818056341485784}{31758034896415372928460041374599575} a^{2} + \frac{1}{4} a - \frac{1009628519447230003109257590553055}{2540642791713229834276803309967966}$, $\frac{1}{3175803489641537292846004137459957500} a^{19} - \frac{2572420949227704174264245108622317}{793950872410384323211501034364989375} a^{17} - \frac{145348579279006360412177419150291579}{3175803489641537292846004137459957500} a^{15} - \frac{1}{4} a^{14} - \frac{120730857884523479925389296858305503}{635160697928307458569200827491991500} a^{13} - \frac{1}{4} a^{12} - \frac{19099262660636197193911538277114609}{317580348964153729284600413745995750} a^{11} + \frac{88320165922348106116699460088999881}{317580348964153729284600413745995750} a^{9} + \frac{1}{4} a^{8} - \frac{46544542694470798468676266670395091}{158790174482076864642300206872997875} a^{7} + \frac{1}{4} a^{6} + \frac{29424371279361590249548210846727092}{158790174482076864642300206872997875} a^{5} + \frac{1}{4} a^{4} + \frac{55194251612092131154107898757855589}{635160697928307458569200827491991500} a^{3} + \frac{1}{4} a^{2} - \frac{1139974957651922460123829622768519}{6351606979283074585692008274919915} a - \frac{1}{4}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 72716401813600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n792 are not computed |
| Character table for t20n792 is not computed |
Intermediate fields
| 5.5.753625.1, 10.10.17531772991120000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 6029 | Data not computed | ||||||