Normalized defining polynomial
\( x^{20} - 3 x^{19} - 33 x^{18} + 57 x^{17} + 387 x^{16} - 315 x^{15} - 1867 x^{14} + 753 x^{13} + 3353 x^{12} - 4272 x^{11} - 3517 x^{10} + 15328 x^{9} + 3673 x^{8} - 15652 x^{7} + 24753 x^{6} + 18740 x^{5} - 24733 x^{4} + 12707 x^{3} + 23592 x^{2} - 9768 x - 8059 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(152984164439159881898345947265625=3^{4}\cdot 5^{16}\cdot 23^{4}\cdot 89^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{25} a^{16} + \frac{1}{25} a^{15} - \frac{1}{25} a^{11} - \frac{1}{25} a^{10} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{6}{25} a^{6} - \frac{6}{25} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{25} a + \frac{1}{25}$, $\frac{1}{25} a^{17} - \frac{1}{25} a^{15} - \frac{1}{25} a^{12} + \frac{1}{25} a^{10} + \frac{4}{25} a^{7} + \frac{2}{5} a^{6} + \frac{6}{25} a^{5} - \frac{4}{25} a^{2} - \frac{2}{5} a - \frac{6}{25}$, $\frac{1}{25} a^{18} + \frac{1}{25} a^{15} - \frac{1}{25} a^{13} - \frac{1}{25} a^{10} + \frac{9}{25} a^{8} - \frac{6}{25} a^{5} - \frac{1}{5} a^{4} + \frac{11}{25} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{1}{25}$, $\frac{1}{84458642583168814566333676958646728225} a^{19} + \frac{1059847099001138536281789256023726228}{84458642583168814566333676958646728225} a^{18} + \frac{907013215908174972465632055876701726}{84458642583168814566333676958646728225} a^{17} + \frac{1009465363121078204650573159246044551}{84458642583168814566333676958646728225} a^{16} - \frac{223693608968040167592852623910375118}{84458642583168814566333676958646728225} a^{15} + \frac{5962853118322868904214730971442560164}{84458642583168814566333676958646728225} a^{14} - \frac{950351686268105573865340168556435683}{84458642583168814566333676958646728225} a^{13} + \frac{7124151074347149622133749279639582284}{84458642583168814566333676958646728225} a^{12} - \frac{4221577073739097398843107331845804471}{84458642583168814566333676958646728225} a^{11} - \frac{3290513350430474340104892482977531662}{84458642583168814566333676958646728225} a^{10} - \frac{867445979358173408679788527345474326}{84458642583168814566333676958646728225} a^{9} + \frac{39536298251200677020082357406332291552}{84458642583168814566333676958646728225} a^{8} + \frac{10815511699952512829837139194270051764}{84458642583168814566333676958646728225} a^{7} + \frac{27430372565472928488521414245656287209}{84458642583168814566333676958646728225} a^{6} + \frac{5301712974264756249895636761105886583}{84458642583168814566333676958646728225} a^{5} + \frac{2805843321419116379087339796988456466}{84458642583168814566333676958646728225} a^{4} + \frac{7298987605129270592266126154621804208}{84458642583168814566333676958646728225} a^{3} - \frac{16622572507421919203986714017782683369}{84458642583168814566333676958646728225} a^{2} + \frac{23948470869734793023698483635216330691}{84458642583168814566333676958646728225} a + \frac{30283789864388054930808331682330561227}{84458642583168814566333676958646728225}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 455499895.436 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15360 |
| The 90 conjugacy class representatives for t20n466 are not computed |
| Character table for t20n466 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.767625.1, 10.10.2946240703125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.12.0.1 | $x^{12} - x^{4} - x^{3} - x^{2} + x - 1$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $5$ | 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 89 | Data not computed | ||||||