Normalized defining polynomial
\( x^{20} - 20 x^{18} - 20 x^{17} + 95 x^{16} + 296 x^{15} + 330 x^{14} - 1280 x^{13} - 2460 x^{12} + 1040 x^{11} + 5036 x^{10} + 6000 x^{9} - 18265 x^{8} + 16560 x^{7} - 10240 x^{6} + 784 x^{5} + 2330 x^{4} - 520 x^{3} - 100 x^{2} + 20 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(151120799334400000000000000000000=2^{38}\cdot 5^{20}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{10} - \frac{2}{5} a^{5} - \frac{2}{5}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{11} - \frac{2}{5} a^{6} - \frac{2}{5} a$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{12} - \frac{2}{5} a^{7} - \frac{2}{5} a^{2}$, $\frac{1}{20} a^{18} - \frac{1}{10} a^{17} + \frac{1}{20} a^{16} + \frac{1}{5} a^{13} + \frac{1}{10} a^{12} + \frac{1}{5} a^{11} - \frac{1}{2} a^{10} - \frac{1}{10} a^{8} + \frac{1}{5} a^{7} - \frac{7}{20} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{2}{5} a^{3} - \frac{1}{20} a^{2} - \frac{1}{10} a - \frac{1}{4}$, $\frac{1}{354842792139898973072357541364420} a^{19} + \frac{59423631315556742414117374793}{35484279213989897307235754136442} a^{18} + \frac{34215136772212802901475619509509}{354842792139898973072357541364420} a^{17} + \frac{7804727797369110763383596274357}{88710698034974743268089385341105} a^{16} - \frac{6333326135715068817681339184082}{88710698034974743268089385341105} a^{15} + \frac{18388962157093811559284297080541}{88710698034974743268089385341105} a^{14} + \frac{1506004005746439784908354441065}{35484279213989897307235754136442} a^{13} + \frac{7791652337273983521994546420214}{88710698034974743268089385341105} a^{12} - \frac{20136386556812464188815131887879}{177421396069949486536178770682210} a^{11} + \frac{23534375573481603017744577995287}{88710698034974743268089385341105} a^{10} - \frac{70919655448113607200340291106651}{177421396069949486536178770682210} a^{9} + \frac{4581095793367492110562993736519}{17742139606994948653617877068221} a^{8} + \frac{7894252741904584843797903473557}{354842792139898973072357541364420} a^{7} - \frac{658468694233127252793086956243}{177421396069949486536178770682210} a^{6} - \frac{168510725707680710915482186452299}{354842792139898973072357541364420} a^{5} + \frac{21948678988066695861375216936422}{88710698034974743268089385341105} a^{4} - \frac{19413726216303254761352979665045}{70968558427979794614471508272884} a^{3} + \frac{68710234094290653430329587507461}{177421396069949486536178770682210} a^{2} - \frac{81229427048864235991270816583161}{354842792139898973072357541364420} a - \frac{13168695352092374601600609975081}{88710698034974743268089385341105}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1439193689.55 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 204800 |
| The 116 conjugacy class representatives for t20n872 are not computed |
| Character table for t20n872 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.6.15680000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.10.9 | $x^{10} + 10 x^{8} + 10 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 17$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ |
| 5.10.10.9 | $x^{10} + 10 x^{8} + 10 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 17$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.6.3 | $x^{8} - 7 x^{4} + 147$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |