Properties

Label 20.12.1470391355...0000.2
Degree $20$
Signature $[12, 4]$
Discriminant $2^{20}\cdot 5^{15}\cdot 11^{16}$
Root discriminant $45.54$
Ramified primes $2, 5, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T344

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3125, 0, 31250, 0, -55000, 0, -41875, 0, 53000, 0, 1250, 0, -10950, 0, 2625, 0, -110, 0, -15, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 15*x^18 - 110*x^16 + 2625*x^14 - 10950*x^12 + 1250*x^10 + 53000*x^8 - 41875*x^6 - 55000*x^4 + 31250*x^2 + 3125)
 
gp: K = bnfinit(x^20 - 15*x^18 - 110*x^16 + 2625*x^14 - 10950*x^12 + 1250*x^10 + 53000*x^8 - 41875*x^6 - 55000*x^4 + 31250*x^2 + 3125, 1)
 

Normalized defining polynomial

\( x^{20} - 15 x^{18} - 110 x^{16} + 2625 x^{14} - 10950 x^{12} + 1250 x^{10} + 53000 x^{8} - 41875 x^{6} - 55000 x^{4} + 31250 x^{2} + 3125 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1470391355634309152000000000000000=2^{20}\cdot 5^{15}\cdot 11^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $45.54$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{25} a^{11}$, $\frac{1}{125} a^{12}$, $\frac{1}{125} a^{13}$, $\frac{1}{125} a^{14}$, $\frac{1}{125} a^{15}$, $\frac{1}{7286875} a^{16} - \frac{2426}{1457375} a^{14} + \frac{4428}{1457375} a^{12} + \frac{276}{58295} a^{10} + \frac{4722}{291475} a^{8} + \frac{629}{58295} a^{6} + \frac{962}{58295} a^{4} - \frac{889}{11659} a^{2} + \frac{2867}{11659}$, $\frac{1}{7286875} a^{17} - \frac{2426}{1457375} a^{15} + \frac{4428}{1457375} a^{13} + \frac{276}{58295} a^{11} + \frac{4722}{291475} a^{9} + \frac{629}{58295} a^{7} + \frac{962}{58295} a^{5} - \frac{889}{11659} a^{3} + \frac{2867}{11659} a$, $\frac{1}{42635505625} a^{18} - \frac{2001}{42635505625} a^{16} - \frac{17324}{13018475} a^{14} + \frac{5268724}{1705420225} a^{12} - \frac{1827411}{341084045} a^{10} - \frac{9005342}{1705420225} a^{8} - \frac{2733576}{341084045} a^{6} - \frac{13624983}{341084045} a^{4} + \frac{20833567}{68216809} a^{2} - \frac{24405013}{68216809}$, $\frac{1}{42635505625} a^{19} - \frac{2001}{42635505625} a^{17} - \frac{17324}{13018475} a^{15} + \frac{5268724}{1705420225} a^{13} - \frac{1827411}{341084045} a^{11} - \frac{9005342}{1705420225} a^{9} - \frac{2733576}{341084045} a^{7} - \frac{13624983}{341084045} a^{5} + \frac{20833567}{68216809} a^{3} - \frac{24405013}{68216809} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1653968640.21 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T344:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 80 conjugacy class representatives for t20n344 are not computed
Character table for t20n344 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ R $20$ R $20$ $20$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ $20$ $20$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$