Normalized defining polynomial
\( x^{20} - 6 x^{19} - 3 x^{18} + 92 x^{17} - 164 x^{16} - 372 x^{15} + 1636 x^{14} - 844 x^{13} - 5371 x^{12} + 9010 x^{11} + 5133 x^{10} - 18932 x^{9} - 2738 x^{8} + 20648 x^{7} + 11246 x^{6} - 23868 x^{5} - 12104 x^{4} + 19712 x^{3} + 564 x^{2} - 4320 x + 872 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14242101261647179649923801939968=2^{30}\cdot 3^{3}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{14} + \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{424} a^{16} - \frac{25}{424} a^{15} + \frac{3}{106} a^{14} + \frac{7}{212} a^{13} - \frac{9}{424} a^{12} + \frac{99}{424} a^{11} + \frac{3}{106} a^{10} - \frac{43}{212} a^{9} + \frac{10}{53} a^{8} - \frac{35}{212} a^{7} + \frac{19}{106} a^{6} + \frac{19}{106} a^{5} - \frac{2}{53} a^{4} - \frac{3}{106} a^{3} + \frac{15}{53} a^{2} - \frac{16}{53} a - \frac{22}{53}$, $\frac{1}{848} a^{17} - \frac{1}{848} a^{16} - \frac{5}{848} a^{15} + \frac{37}{848} a^{14} + \frac{9}{848} a^{13} + \frac{95}{848} a^{12} - \frac{209}{848} a^{11} - \frac{63}{848} a^{10} + \frac{15}{424} a^{9} - \frac{29}{424} a^{8} + \frac{99}{424} a^{7} + \frac{49}{424} a^{6} + \frac{81}{212} a^{5} + \frac{15}{53} a^{4} + \frac{11}{212} a^{3} - \frac{1}{212} a^{2} - \frac{35}{106} a - \frac{51}{106}$, $\frac{1}{848} a^{18} - \frac{3}{212} a^{15} + \frac{3}{212} a^{14} - \frac{3}{106} a^{13} + \frac{11}{212} a^{12} + \frac{1}{212} a^{11} - \frac{67}{848} a^{10} + \frac{23}{212} a^{9} - \frac{1}{53} a^{8} + \frac{11}{106} a^{7} - \frac{91}{424} a^{6} - \frac{63}{212} a^{5} + \frac{47}{212} a^{4} + \frac{49}{106} a^{3} + \frac{3}{212} a^{2} + \frac{15}{53} a + \frac{29}{106}$, $\frac{1}{612174380888704} a^{19} - \frac{22258038591}{612174380888704} a^{18} + \frac{57608300751}{153043595222176} a^{17} - \frac{9291904105}{19130449402772} a^{16} - \frac{4430978765409}{153043595222176} a^{15} + \frac{1392419263043}{38260898805544} a^{14} - \frac{14880373954731}{153043595222176} a^{13} - \frac{545274299811}{9565224701386} a^{12} - \frac{69141349075835}{612174380888704} a^{11} + \frac{76604558752853}{612174380888704} a^{10} - \frac{7152889039313}{76521797611088} a^{9} - \frac{15332236123771}{153043595222176} a^{8} + \frac{47744980459261}{306087190444352} a^{7} + \frac{27173115867263}{306087190444352} a^{6} - \frac{8888690866803}{38260898805544} a^{5} + \frac{22415073287093}{153043595222176} a^{4} - \frac{13452932766327}{153043595222176} a^{3} - \frac{75561096042065}{153043595222176} a^{2} + \frac{8672177755343}{76521797611088} a + \frac{15195042437261}{76521797611088}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1894538107.15 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 655360 |
| The 331 conjugacy class representatives for t20n946 are not computed |
| Character table for t20n946 is not computed |
Intermediate fields
| 5.5.2382032.1, 10.8.272355669553152.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.8.12.19 | $x^{8} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ | |
| 2.8.12.19 | $x^{8} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ | |
| 3 | Data not computed | ||||||
| $53$ | 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |