Normalized defining polynomial
\( x^{20} - 27 x^{18} + 65 x^{16} + 4146 x^{14} - 49994 x^{12} + 222810 x^{10} - 315784 x^{8} - 380113 x^{6} + 805793 x^{4} + 677469 x^{2} + 46813 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1387878212018685329902859942836267122688=2^{20}\cdot 13^{10}\cdot 277^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 277$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{191} a^{16} - \frac{21}{191} a^{14} + \frac{22}{191} a^{12} + \frac{52}{191} a^{10} + \frac{85}{191} a^{8} - \frac{36}{191} a^{6} + \frac{93}{191} a^{4} + \frac{30}{191} a^{2} + \frac{32}{191}$, $\frac{1}{191} a^{17} - \frac{21}{191} a^{15} + \frac{22}{191} a^{13} + \frac{52}{191} a^{11} + \frac{85}{191} a^{9} - \frac{36}{191} a^{7} + \frac{93}{191} a^{5} + \frac{30}{191} a^{3} + \frac{32}{191} a$, $\frac{1}{24771266519285810012359} a^{18} - \frac{40188325224034685257}{24771266519285810012359} a^{16} - \frac{524585504164600496738}{1905482039945062308643} a^{14} - \frac{7784413292113634070623}{24771266519285810012359} a^{12} - \frac{9101675093726295430476}{24771266519285810012359} a^{10} + \frac{9133040781449634929428}{24771266519285810012359} a^{8} + \frac{4633615915829075668297}{24771266519285810012359} a^{6} - \frac{133146875815293678365}{348891077736419859329} a^{4} - \frac{7285506852609984152153}{24771266519285810012359} a^{2} + \frac{448234375070620750019}{1905482039945062308643}$, $\frac{1}{322026464750715530160667} a^{19} - \frac{688650799550888350502}{322026464750715530160667} a^{17} + \frac{10050341000242551582642}{24771266519285810012359} a^{15} - \frac{145906920323733464767808}{322026464750715530160667} a^{13} - \frac{92364256797294306047934}{322026464750715530160667} a^{11} + \frac{127412596098667743470116}{322026464750715530160667} a^{9} - \frac{46335534566261622419960}{322026464750715530160667} a^{7} - \frac{2029214617649868620687}{4535584010573458171277} a^{5} + \frac{47574418475441835927574}{322026464750715530160667} a^{3} + \frac{12190393333266109426840}{24771266519285810012359} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1452077241750 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 28 conjugacy class representatives for t20n138 |
| Character table for t20n138 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.5.12967201.1, 10.10.2185927923067213.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | $20$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 277 | Data not computed | ||||||