Normalized defining polynomial
\( x^{20} - 5 x^{19} + 10 x^{18} + 19 x^{17} - 358 x^{16} + 1421 x^{15} - 1915 x^{14} - 11527 x^{13} + 56996 x^{12} - 56386 x^{11} - 232215 x^{10} + 817458 x^{9} - 282186 x^{8} - 2631475 x^{7} + 4064657 x^{6} + 2545449 x^{5} - 11247840 x^{4} - 1023297 x^{3} + 10748090 x^{2} + 1917583 x - 782737 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1347783697341346832395134211051765625=5^{6}\cdot 36497^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{5898794686524772798541636946859888422365178420328436635851495408993} a^{19} - \frac{41656471442338421204920181450666529497864950576477868066994575129}{1966264895508257599513878982286629474121726140109478878617165136331} a^{18} - \frac{1005110435913473620946137098694607640144539420999594773403950053257}{5898794686524772798541636946859888422365178420328436635851495408993} a^{17} + \frac{589843412983513224144398053884548247274616787965057506665857913691}{1966264895508257599513878982286629474121726140109478878617165136331} a^{16} - \frac{2743055515039101786269704531354364181863443158668939021904372047428}{5898794686524772798541636946859888422365178420328436635851495408993} a^{15} + \frac{97726523507564681298200557613473254722252060370719724960568478157}{218473877278695288834875442476292163791302904456608764290796126259} a^{14} - \frac{2834417021711978840826746754176346565878059530098437149060710923629}{5898794686524772798541636946859888422365178420328436635851495408993} a^{13} + \frac{32037020518580443851432162421060466536445194834509285673236011561}{218473877278695288834875442476292163791302904456608764290796126259} a^{12} + \frac{1011235504448673565192432384914336142211849846020802477687061999443}{5898794686524772798541636946859888422365178420328436635851495408993} a^{11} + \frac{70503399576951105209169186809485490397417228856927559044741747268}{655421631836085866504626327428876491373908713369826292872388378777} a^{10} + \frac{941286562204038292792030359605385082832757475552443978563309517895}{1966264895508257599513878982286629474121726140109478878617165136331} a^{9} - \frac{599667218840381532189890325694714308369467763914859144943503325529}{1966264895508257599513878982286629474121726140109478878617165136331} a^{8} - \frac{548283184490298765133485062719105444608665946657300679788476722711}{1966264895508257599513878982286629474121726140109478878617165136331} a^{7} - \frac{2173865417000489508400179811078595336558067979368239941044410266192}{5898794686524772798541636946859888422365178420328436635851495408993} a^{6} + \frac{982114473560067750038252795100215925772432129138856297905664189077}{1966264895508257599513878982286629474121726140109478878617165136331} a^{5} - \frac{303283302912389888947254650242755120949666759216264597788307708088}{1966264895508257599513878982286629474121726140109478878617165136331} a^{4} - \frac{679519072866048868370824497335409185564511864680773462633421306233}{1966264895508257599513878982286629474121726140109478878617165136331} a^{3} - \frac{934068675559285132927678077290154150643136757329739596667462270160}{1966264895508257599513878982286629474121726140109478878617165136331} a^{2} - \frac{29459470765185761501896361651932552664609965288190223157525684801}{5898794686524772798541636946859888422365178420328436635851495408993} a + \frac{1042024568123781233496986794625787744467029100393294902904416084703}{5898794686524772798541636946859888422365178420328436635851495408993}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 206914666737 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.36497.1, 10.10.1215378393386825.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | $16{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.8.6.4 | $x^{8} - 5 x^{4} + 50$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| 36497 | Data not computed | ||||||