Normalized defining polynomial
\( x^{20} - 8 x^{19} + 19 x^{18} + 21 x^{17} - 308 x^{16} + 760 x^{15} + 157 x^{14} - 3622 x^{13} + 6324 x^{12} - 1232 x^{11} - 9503 x^{10} + 5610 x^{9} + 9118 x^{8} + 4815 x^{7} - 36704 x^{6} + 34046 x^{5} - 583 x^{4} - 20406 x^{3} + 15804 x^{2} - 4705 x + 397 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13047078908784463218470268232704=2^{10}\cdot 3^{10}\cdot 11^{18}\cdot 197^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{67} a^{18} - \frac{4}{67} a^{17} - \frac{1}{67} a^{16} + \frac{33}{67} a^{15} + \frac{29}{67} a^{14} + \frac{7}{67} a^{13} + \frac{2}{67} a^{12} - \frac{24}{67} a^{11} - \frac{11}{67} a^{10} + \frac{26}{67} a^{9} + \frac{25}{67} a^{8} - \frac{22}{67} a^{7} + \frac{19}{67} a^{6} + \frac{21}{67} a^{5} + \frac{20}{67} a^{4} + \frac{6}{67} a^{3} + \frac{31}{67} a^{2} - \frac{5}{67} a - \frac{18}{67}$, $\frac{1}{1044201176711848952889528834277412845729} a^{19} + \frac{3473219980725269303932740789199266438}{1044201176711848952889528834277412845729} a^{18} - \frac{468537098633898396349617250338252989396}{1044201176711848952889528834277412845729} a^{17} + \frac{321100766768549923458207921957992034158}{1044201176711848952889528834277412845729} a^{16} - \frac{400648069193215520813776286037627521531}{1044201176711848952889528834277412845729} a^{15} + \frac{196069872746268639015696803397597286205}{1044201176711848952889528834277412845729} a^{14} + \frac{182431684124421540792412673746346543904}{1044201176711848952889528834277412845729} a^{13} - \frac{366058886185206985415255828727149280984}{1044201176711848952889528834277412845729} a^{12} - \frac{215112686381542256139498328680989381724}{1044201176711848952889528834277412845729} a^{11} - \frac{426087556425045980042719350913574966563}{1044201176711848952889528834277412845729} a^{10} + \frac{170858636750446878613333771370196583330}{1044201176711848952889528834277412845729} a^{9} + \frac{513236785133014008840625483980502033847}{1044201176711848952889528834277412845729} a^{8} - \frac{473450819708437625376654777874719625962}{1044201176711848952889528834277412845729} a^{7} - \frac{409060070418321358324409033262418628122}{1044201176711848952889528834277412845729} a^{6} + \frac{162006007326429912162297209279638420948}{1044201176711848952889528834277412845729} a^{5} - \frac{220580325789939907187520551151819511524}{1044201176711848952889528834277412845729} a^{4} - \frac{364091283815710647196537899536839140655}{1044201176711848952889528834277412845729} a^{3} + \frac{6320845293210539172993317570882106368}{15585092189729088849097445287722579787} a^{2} + \frac{202576870071744957120297934928814564688}{1044201176711848952889528834277412845729} a - \frac{139161916019302680085023331776021663562}{1044201176711848952889528834277412845729}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 215903278.765 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2560 |
| The 40 conjugacy class representatives for t20n262 |
| Character table for t20n262 is not computed |
Intermediate fields
| \(\Q(\sqrt{33}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{33})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $197$ | $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.2.1.1 | $x^{2} - 197$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |