Properties

Label 20.12.1249801611...0625.2
Degree $20$
Signature $[12, 4]$
Discriminant $5^{10}\cdot 61^{6}\cdot 397^{4}$
Root discriminant $25.40$
Ramified primes $5, 61, 397$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T368

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 16, 19, -227, -248, 1575, -293, -3128, 2124, 1979, -2573, 343, 943, -690, 141, 79, -108, 56, -4, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^19 - 4*x^18 + 56*x^17 - 108*x^16 + 79*x^15 + 141*x^14 - 690*x^13 + 943*x^12 + 343*x^11 - 2573*x^10 + 1979*x^9 + 2124*x^8 - 3128*x^7 - 293*x^6 + 1575*x^5 - 248*x^4 - 227*x^3 + 19*x^2 + 16*x + 1)
 
gp: K = bnfinit(x^20 - 5*x^19 - 4*x^18 + 56*x^17 - 108*x^16 + 79*x^15 + 141*x^14 - 690*x^13 + 943*x^12 + 343*x^11 - 2573*x^10 + 1979*x^9 + 2124*x^8 - 3128*x^7 - 293*x^6 + 1575*x^5 - 248*x^4 - 227*x^3 + 19*x^2 + 16*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 5 x^{19} - 4 x^{18} + 56 x^{17} - 108 x^{16} + 79 x^{15} + 141 x^{14} - 690 x^{13} + 943 x^{12} + 343 x^{11} - 2573 x^{10} + 1979 x^{9} + 2124 x^{8} - 3128 x^{7} - 293 x^{6} + 1575 x^{5} - 248 x^{4} - 227 x^{3} + 19 x^{2} + 16 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(12498016119724696953525390625=5^{10}\cdot 61^{6}\cdot 397^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $25.40$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 61, 397$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{7417330220580586785601} a^{19} + \frac{424346711456782931467}{7417330220580586785601} a^{18} + \frac{3644142245039726764310}{7417330220580586785601} a^{17} - \frac{705484522255363806631}{7417330220580586785601} a^{16} + \frac{1760890081042384269999}{7417330220580586785601} a^{15} - \frac{3603997513380675722716}{7417330220580586785601} a^{14} - \frac{2934839896172568398871}{7417330220580586785601} a^{13} - \frac{2203292352040124460609}{7417330220580586785601} a^{12} + \frac{2694977446144019685208}{7417330220580586785601} a^{11} + \frac{913164998238868988159}{7417330220580586785601} a^{10} - \frac{398204770345253761398}{7417330220580586785601} a^{9} + \frac{3594664723978773211276}{7417330220580586785601} a^{8} + \frac{2747154051693905973337}{7417330220580586785601} a^{7} - \frac{2559385318357205536578}{7417330220580586785601} a^{6} - \frac{21338236876832345863}{7417330220580586785601} a^{5} + \frac{3053847947676951927568}{7417330220580586785601} a^{4} + \frac{1569692947889984047225}{7417330220580586785601} a^{3} + \frac{619378067135854275013}{7417330220580586785601} a^{2} - \frac{2014795606223069637090}{7417330220580586785601} a - \frac{1947513218282428804640}{7417330220580586785601}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7432392.52454 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T368:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7680
The 72 conjugacy class representatives for t20n368 are not computed
Character table for t20n368 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.24217.1, 10.6.178871242145.2, 10.10.1832697153125.1, 10.6.22358905268125.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
61Data not computed
397Data not computed