Properties

Label 20.12.1240701201...0000.1
Degree $20$
Signature $[12, 4]$
Discriminant $2^{22}\cdot 3^{12}\cdot 5^{12}\cdot 691^{4}$
Root discriminant $40.24$
Ramified primes $2, 3, 5, 691$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1025

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 0, -90, 0, 379, 0, -121, 0, -479, 0, -194, 0, 221, 0, 82, 0, -23, 0, -5, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^18 - 23*x^16 + 82*x^14 + 221*x^12 - 194*x^10 - 479*x^8 - 121*x^6 + 379*x^4 - 90*x^2 + 4)
 
gp: K = bnfinit(x^20 - 5*x^18 - 23*x^16 + 82*x^14 + 221*x^12 - 194*x^10 - 479*x^8 - 121*x^6 + 379*x^4 - 90*x^2 + 4, 1)
 

Normalized defining polynomial

\( x^{20} - 5 x^{18} - 23 x^{16} + 82 x^{14} + 221 x^{12} - 194 x^{10} - 479 x^{8} - 121 x^{6} + 379 x^{4} - 90 x^{2} + 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(124070120141982925824000000000000=2^{22}\cdot 3^{12}\cdot 5^{12}\cdot 691^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 691$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{15} a^{16} + \frac{2}{15} a^{14} + \frac{1}{3} a^{12} - \frac{4}{15} a^{8} - \frac{7}{15} a^{6} - \frac{4}{15} a^{4} - \frac{7}{15} a^{2} - \frac{1}{15}$, $\frac{1}{15} a^{17} + \frac{2}{15} a^{15} + \frac{1}{3} a^{13} - \frac{4}{15} a^{9} - \frac{7}{15} a^{7} - \frac{4}{15} a^{5} - \frac{7}{15} a^{3} - \frac{1}{15} a$, $\frac{1}{3645894030} a^{18} + \frac{16612981}{1215298010} a^{16} + \frac{117215989}{1215298010} a^{14} + \frac{99438880}{364589403} a^{12} + \frac{1530161251}{3645894030} a^{10} - \frac{109275023}{1822947015} a^{8} - \frac{786506681}{3645894030} a^{6} + \frac{994540349}{3645894030} a^{4} - \frac{1420955513}{3645894030} a^{2} + \frac{253127484}{607649005}$, $\frac{1}{3645894030} a^{19} + \frac{16612981}{1215298010} a^{17} + \frac{117215989}{1215298010} a^{15} + \frac{99438880}{364589403} a^{13} + \frac{1530161251}{3645894030} a^{11} - \frac{109275023}{1822947015} a^{9} - \frac{786506681}{3645894030} a^{7} + \frac{994540349}{3645894030} a^{5} - \frac{1420955513}{3645894030} a^{3} + \frac{253127484}{607649005} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1401433049.97 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1025:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7372800
The 216 conjugacy class representatives for t20n1025 are not computed
Character table for t20n1025 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.6.5438807015625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ $16{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ $16{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ $16{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.6.6.5$x^{6} + 6 x^{3} + 9 x^{2} + 9$$3$$2$$6$$S_3^2$$[3/2, 3/2]_{2}^{2}$
3.6.6.5$x^{6} + 6 x^{3} + 9 x^{2} + 9$$3$$2$$6$$S_3^2$$[3/2, 3/2]_{2}^{2}$
$5$5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
691Data not computed