Normalized defining polynomial
\( x^{20} - 2 x^{19} - 17 x^{18} + 15 x^{17} + 88 x^{16} + 83 x^{15} - 522 x^{14} - 1212 x^{13} + 1417 x^{12} + 3182 x^{11} + 2754 x^{10} - 2198 x^{9} - 11863 x^{8} - 121 x^{7} + 2620 x^{6} - 2777 x^{5} + 11792 x^{4} + 5447 x^{3} - 3558 x^{2} - 69 x + 41 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12145567127297495495635986328125=3^{4}\cdot 5^{15}\cdot 23^{8}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{14} - \frac{2}{9} a^{13} - \frac{4}{9} a^{12} + \frac{2}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{4}{9} a^{8} + \frac{2}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{9} a^{4} + \frac{1}{9} a^{3} - \frac{1}{9} a^{2} + \frac{4}{9} a + \frac{2}{9}$, $\frac{1}{27} a^{17} + \frac{1}{27} a^{16} + \frac{4}{27} a^{15} - \frac{4}{27} a^{14} + \frac{1}{3} a^{13} + \frac{4}{27} a^{12} + \frac{1}{27} a^{11} + \frac{2}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{27} a^{8} - \frac{4}{9} a^{7} + \frac{1}{27} a^{6} + \frac{7}{27} a^{5} + \frac{2}{27} a^{4} - \frac{2}{9} a^{3} + \frac{1}{9} a^{2} + \frac{1}{9} a - \frac{10}{27}$, $\frac{1}{27} a^{18} + \frac{1}{27} a^{15} + \frac{1}{27} a^{14} - \frac{8}{27} a^{13} - \frac{1}{27} a^{11} + \frac{4}{9} a^{10} + \frac{1}{27} a^{9} + \frac{8}{27} a^{8} - \frac{11}{27} a^{7} + \frac{4}{9} a^{6} + \frac{4}{27} a^{5} - \frac{11}{27} a^{4} - \frac{4}{9} a^{3} + \frac{1}{9} a^{2} - \frac{7}{27} a - \frac{5}{27}$, $\frac{1}{1233058499245084479934608938146536156321} a^{19} - \frac{26237868362001171419288012833768316}{411019499748361493311536312715512052107} a^{18} - \frac{19235954283109474916849747215573878890}{1233058499245084479934608938146536156321} a^{17} + \frac{67544448101133309557754756467843407646}{1233058499245084479934608938146536156321} a^{16} - \frac{199533369626945823044746841515446297553}{1233058499245084479934608938146536156321} a^{15} - \frac{50309682254838936606504848512270856510}{411019499748361493311536312715512052107} a^{14} - \frac{33834371503373844380937017974571931787}{137006499916120497770512104238504017369} a^{13} - \frac{38107315975643884102591882957118334221}{137006499916120497770512104238504017369} a^{12} - \frac{41750556429280363643313553843147333970}{1233058499245084479934608938146536156321} a^{11} + \frac{353783708009070989393254623542881250743}{1233058499245084479934608938146536156321} a^{10} - \frac{457146640907704194385662336655269172822}{1233058499245084479934608938146536156321} a^{9} - \frac{392918210906175533738472829052431160383}{1233058499245084479934608938146536156321} a^{8} + \frac{119550732916178986225007782577008183976}{411019499748361493311536312715512052107} a^{7} + \frac{453682827418973691048662380905024120509}{1233058499245084479934608938146536156321} a^{6} - \frac{137245810743982481452451289823435985599}{1233058499245084479934608938146536156321} a^{5} + \frac{248188660851172208924203661024903714297}{1233058499245084479934608938146536156321} a^{4} - \frac{119467518450102182324477702892372063527}{411019499748361493311536312715512052107} a^{3} - \frac{48148288779458152418537551392423693496}{1233058499245084479934608938146536156321} a^{2} + \frac{213847306046514780179851081512957285208}{1233058499245084479934608938146536156321} a - \frac{272393727261180408182942213363544641371}{1233058499245084479934608938146536156321}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 262816482.728 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n802 are not computed |
| Character table for t20n802 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.767625.1, 10.10.2946240703125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.12.0.1 | $x^{12} - x^{4} - x^{3} - x^{2} + x - 1$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 5 | Data not computed | ||||||
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |