Normalized defining polynomial
\( x^{20} - 4 x^{19} - 87 x^{18} + 386 x^{17} + 606 x^{16} - 4441 x^{15} + 22730 x^{14} - 50132 x^{13} - 75973 x^{12} + 311050 x^{11} - 1435499 x^{10} + 3989586 x^{9} - 1868787 x^{8} - 1812945 x^{7} + 11293992 x^{6} - 38500433 x^{5} + 48646097 x^{4} - 8351232 x^{3} - 56039732 x^{2} + 53460795 x - 13691801 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(120593484045596801425364025023890468434241=17^{8}\cdot 401^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $113.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{646} a^{18} - \frac{1}{34} a^{17} + \frac{22}{323} a^{16} + \frac{2}{19} a^{15} - \frac{42}{323} a^{14} + \frac{118}{323} a^{13} - \frac{87}{323} a^{12} + \frac{3}{17} a^{11} + \frac{147}{646} a^{10} - \frac{3}{34} a^{9} + \frac{47}{323} a^{8} + \frac{4}{17} a^{7} + \frac{131}{646} a^{6} - \frac{125}{646} a^{5} - \frac{237}{646} a^{4} + \frac{35}{323} a^{3} + \frac{277}{646} a^{2} - \frac{72}{323} a + \frac{161}{323}$, $\frac{1}{696867240043794630077142740116473309759261383393337143001144597695290982592554198} a^{19} + \frac{195136738472680651508582698087219726548223483419900460574179047214706303601711}{696867240043794630077142740116473309759261383393337143001144597695290982592554198} a^{18} + \frac{72942675253260716915111578187992830930667128825569471974478810019855251396162177}{696867240043794630077142740116473309759261383393337143001144597695290982592554198} a^{17} - \frac{82140639804597864118424667838626897074890207586672103874075654627390597019094155}{348433620021897315038571370058236654879630691696668571500572298847645491296277099} a^{16} - \frac{41875311077868115136660164407220457590959052923932141982756642300382063693142138}{348433620021897315038571370058236654879630691696668571500572298847645491296277099} a^{15} + \frac{32240304690599579019923770851885986756985037461739319505548146341261474071855808}{348433620021897315038571370058236654879630691696668571500572298847645491296277099} a^{14} + \frac{30605278040547617112049046736357268769499133636590748731643096398015694050353654}{348433620021897315038571370058236654879630691696668571500572298847645491296277099} a^{13} + \frac{48375532315843955018892353376266038359605484959909318977243552880775107929208278}{348433620021897315038571370058236654879630691696668571500572298847645491296277099} a^{12} + \frac{82125973576751280053056349312543747742286146068121991227760039983749727017461401}{696867240043794630077142740116473309759261383393337143001144597695290982592554198} a^{11} - \frac{29852644077750515229782129788974836875104323067384573154210518653855057133336263}{696867240043794630077142740116473309759261383393337143001144597695290982592554198} a^{10} + \frac{8551773738943652567235201237163360486988159443077532087864610641926729497735965}{40992190590811448828067220006851371162309493140784537823596741040899469564267894} a^{9} - \frac{40575996436595630187005209489238948598704059700075533357821726918046757359708884}{348433620021897315038571370058236654879630691696668571500572298847645491296277099} a^{8} + \frac{260740961326080038109619371137316535246302588016207083246778552358891540045132923}{696867240043794630077142740116473309759261383393337143001144597695290982592554198} a^{7} - \frac{73236899805039058082151664012365762409792637916241112007063012361841564758866593}{696867240043794630077142740116473309759261383393337143001144597695290982592554198} a^{6} + \frac{11496155630516129804759680789922438404996173191578495568254008207098357410855362}{348433620021897315038571370058236654879630691696668571500572298847645491296277099} a^{5} - \frac{4264140035867786128078823454440789793335711523872183785699486928425934663476136}{18338611580099858686240598424117718677875299562982556394766963097244499541909321} a^{4} + \frac{109218744727100382869929512503207068059973917504645891070996924542456512600218274}{348433620021897315038571370058236654879630691696668571500572298847645491296277099} a^{3} + \frac{223280863862752162977300582999915082236766830329904792233967896648915809326405507}{696867240043794630077142740116473309759261383393337143001144597695290982592554198} a^{2} + \frac{6956280315536451062303538441536436168180838465798753402961969438069455316312643}{18338611580099858686240598424117718677875299562982556394766963097244499541909321} a + \frac{249923537105417549012551731337802456122144578980780787654351664910299876640380}{11239794194254752098018431292201182415471957796666728112921687059601467461170229}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12265917725000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n354 |
| Character table for t20n354 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.2996537422978289.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||