Normalized defining polynomial
\( x^{20} - 9 x^{19} + 278 x^{17} - 1128 x^{16} - 2239 x^{15} + 8210 x^{14} + 28252 x^{13} + 158779 x^{12} + 35603 x^{11} - 1301137 x^{10} - 4117047 x^{9} - 9705219 x^{8} - 4463541 x^{7} + 27760434 x^{6} + 67463449 x^{5} + 101134914 x^{4} + 32394489 x^{3} - 157942374 x^{2} - 199032963 x - 67972159 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(120593484045596801425364025023890468434241=17^{8}\cdot 401^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $113.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{20852} a^{18} - \frac{1551}{20852} a^{17} + \frac{37}{401} a^{16} - \frac{1141}{20852} a^{15} - \frac{2049}{20852} a^{14} - \frac{3597}{20852} a^{13} + \frac{178}{5213} a^{12} + \frac{5125}{20852} a^{11} + \frac{4827}{20852} a^{10} - \frac{1905}{5213} a^{9} + \frac{3275}{20852} a^{8} + \frac{2186}{5213} a^{7} - \frac{8889}{20852} a^{6} + \frac{911}{10426} a^{5} + \frac{6531}{20852} a^{4} - \frac{4263}{20852} a^{3} + \frac{7239}{20852} a^{2} - \frac{7689}{20852} a + \frac{3045}{20852}$, $\frac{1}{293750463016740163332303595111309587523864177541281983217253958351833051292} a^{19} + \frac{3575573901285912250531469364891884655228629560391824666926139093311527}{293750463016740163332303595111309587523864177541281983217253958351833051292} a^{18} + \frac{1659131322093202310008785069771329230383322268456454877504338587353664383}{22596189462826166410177199623946891347989552118560152555173381411679465484} a^{17} + \frac{33300097562638615004763845783074170422974054940595162943281501637350001387}{293750463016740163332303595111309587523864177541281983217253958351833051292} a^{16} - \frac{5049028996401489664033090256801319062985942898347835118902817374703848385}{146875231508370081666151797555654793761932088770640991608626979175916525646} a^{15} + \frac{4008124458412930990798261540599418477274137639328915034688248980055699749}{24479205251395013611025299592609132293655348128440165268104496529319420941} a^{14} + \frac{28912889637957001116459278338049581081036785735637192767876898086120417611}{293750463016740163332303595111309587523864177541281983217253958351833051292} a^{13} - \frac{58298434764406867221616725741452781979664769586180433738080229146981583137}{293750463016740163332303595111309587523864177541281983217253958351833051292} a^{12} + \frac{20993870102843010937395163765087218738905265357256291185118120436900285171}{293750463016740163332303595111309587523864177541281983217253958351833051292} a^{11} + \frac{9125288240131857391896215236574599011062095847779351469382863878224184819}{48958410502790027222050599185218264587310696256880330536208993058638841882} a^{10} + \frac{25694128490092362903941783300305325420172250632049973196840364646703978785}{73437615754185040833075898777827396880966044385320495804313489587958262823} a^{9} + \frac{9408609491401745040268326374113230713952529642956663910051607829871005037}{293750463016740163332303595111309587523864177541281983217253958351833051292} a^{8} - \frac{61372819511551654977344176658564709615957835985075671922576305592738864987}{146875231508370081666151797555654793761932088770640991608626979175916525646} a^{7} - \frac{130122632039839963007723292676806545781305018408443271409297134443857811019}{293750463016740163332303595111309587523864177541281983217253958351833051292} a^{6} - \frac{76926845958574044676602017728505838862676872928809221249204358835049584815}{293750463016740163332303595111309587523864177541281983217253958351833051292} a^{5} - \frac{121859794638438305692972096113750432738680256223982065557232652450286884491}{293750463016740163332303595111309587523864177541281983217253958351833051292} a^{4} - \frac{142140447673763862613197837763671807047849752767156861830589635816356539875}{293750463016740163332303595111309587523864177541281983217253958351833051292} a^{3} - \frac{7222983631990574105467004817168186191510681414784498040057901621750540539}{73437615754185040833075898777827396880966044385320495804313489587958262823} a^{2} - \frac{32067523587396567569986277497223028314262203899814567796424069415527370585}{293750463016740163332303595111309587523864177541281983217253958351833051292} a + \frac{5073994075546879471571078543008516784060364564685074924811612583094967771}{11298094731413083205088599811973445673994776059280076277586690705839732742}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16639828959100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n354 |
| Character table for t20n354 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.2996537422978289.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||