Normalized defining polynomial
\( x^{20} - 5 x^{19} - 14 x^{18} + 141 x^{17} - 343 x^{16} + 50 x^{15} + 1904 x^{14} - 5209 x^{13} + 4433 x^{12} + 5889 x^{11} - 17839 x^{10} + 15105 x^{9} + 2821 x^{8} - 17153 x^{7} + 13978 x^{6} - 407 x^{5} - 6246 x^{4} + 2831 x^{3} + 405 x^{2} - 306 x - 27 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1198207010758520322015083315072437=13^{11}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{15} + \frac{1}{3} a^{12} - \frac{4}{9} a^{11} - \frac{4}{9} a^{10} + \frac{1}{3} a^{9} + \frac{2}{9} a^{8} - \frac{4}{9} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{2}{9} a^{3} + \frac{1}{9} a^{2}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{15} - \frac{1}{9} a^{12} - \frac{1}{3} a^{11} + \frac{4}{9} a^{10} - \frac{4}{9} a^{9} + \frac{1}{3} a^{8} - \frac{2}{9} a^{7} + \frac{1}{3} a^{6} - \frac{2}{9} a^{4} - \frac{1}{3} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{15} - \frac{1}{9} a^{13} + \frac{1}{9} a^{10} - \frac{1}{3} a^{9} - \frac{1}{9} a^{7} + \frac{1}{3} a^{6} + \frac{4}{9} a^{5} + \frac{4}{9} a^{2}$, $\frac{1}{1749870658874480384737306623393} a^{19} + \frac{15190325630673797161876787282}{583290219624826794912435541131} a^{18} - \frac{79762810298079589833225525797}{1749870658874480384737306623393} a^{17} + \frac{39878946592983486900433377836}{1749870658874480384737306623393} a^{16} + \frac{7621939864937396790328628722}{194430073208275598304145180377} a^{15} + \frac{16224091514154093388956981356}{1749870658874480384737306623393} a^{14} - \frac{675827797489010670934741032}{64810024402758532768048393459} a^{13} - \frac{648359873361713341040112773620}{1749870658874480384737306623393} a^{12} + \frac{230664817726187310459090193645}{583290219624826794912435541131} a^{11} + \frac{104940693286926919229479083479}{583290219624826794912435541131} a^{10} - \frac{530559831267052974041341208710}{1749870658874480384737306623393} a^{9} + \frac{617512112059967612515415011435}{1749870658874480384737306623393} a^{8} - \frac{159118320037178044920276364798}{583290219624826794912435541131} a^{7} - \frac{202884320481157821849825977120}{1749870658874480384737306623393} a^{6} - \frac{105288097428382215544472898628}{583290219624826794912435541131} a^{5} - \frac{527482978148136989578612776596}{1749870658874480384737306623393} a^{4} + \frac{69648508289717075880144692108}{1749870658874480384737306623393} a^{3} + \frac{17341191271347432465598639721}{583290219624826794912435541131} a^{2} + \frac{19144881103334788894920320149}{64810024402758532768048393459} a - \frac{3360523660661597717996074118}{64810024402758532768048393459}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14714319324.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.5.160801.1, 10.10.9600508843720093.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | $20$ | $20$ | $20$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||