Normalized defining polynomial
\( x^{20} - x^{19} - 10 x^{18} + 15 x^{17} + 28 x^{16} - 90 x^{15} - 109 x^{14} + 208 x^{13} + 418 x^{12} - 226 x^{11} - 562 x^{10} + 249 x^{9} + 331 x^{8} - 232 x^{7} - 151 x^{6} + 85 x^{5} + 70 x^{4} - 6 x^{3} - 17 x^{2} - x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(115754426025787089002626953125=5^{10}\cdot 29^{5}\cdot 4903^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 4903$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{506071925} a^{18} + \frac{116949038}{506071925} a^{17} + \frac{149896758}{506071925} a^{16} - \frac{25327246}{101214385} a^{15} - \frac{17050179}{506071925} a^{14} - \frac{66650601}{506071925} a^{13} + \frac{161963558}{506071925} a^{12} + \frac{99367309}{506071925} a^{11} - \frac{220611643}{506071925} a^{10} + \frac{29312121}{506071925} a^{9} - \frac{14894316}{506071925} a^{8} - \frac{151513044}{506071925} a^{7} - \frac{172021686}{506071925} a^{6} + \frac{4070671}{101214385} a^{5} + \frac{236699548}{506071925} a^{4} - \frac{29154863}{506071925} a^{3} - \frac{3391084}{506071925} a^{2} + \frac{4071120}{20242877} a + \frac{19393534}{506071925}$, $\frac{1}{837549035875} a^{19} - \frac{339}{837549035875} a^{18} - \frac{116836071793}{837549035875} a^{17} + \frac{191706347429}{837549035875} a^{16} - \frac{268418503394}{837549035875} a^{15} - \frac{415132352093}{837549035875} a^{14} - \frac{43943739743}{167509807175} a^{13} - \frac{15963422757}{837549035875} a^{12} + \frac{267911724864}{837549035875} a^{11} + \frac{154688143207}{837549035875} a^{10} + \frac{183959928167}{837549035875} a^{9} - \frac{400318553362}{837549035875} a^{8} - \frac{190782886348}{837549035875} a^{7} + \frac{142583133702}{837549035875} a^{6} - \frac{359431879912}{837549035875} a^{5} + \frac{252893190016}{837549035875} a^{4} + \frac{104923553767}{837549035875} a^{3} - \frac{198405575882}{837549035875} a^{2} - \frac{354506485116}{837549035875} a + \frac{379368944082}{837549035875}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17846869.089 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 960 |
| The 35 conjugacy class representatives for t20n174 |
| Character table for t20n174 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 5.3.4903.1, 10.6.75123153125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 4903 | Data not computed | ||||||