Normalized defining polynomial
\( x^{20} - x^{19} - 14 x^{18} + 29 x^{17} + 71 x^{16} - 278 x^{15} - 62 x^{14} + 1312 x^{13} - 872 x^{12} - 3358 x^{11} + 4146 x^{10} + 4394 x^{9} - 8419 x^{8} - 1676 x^{7} + 8471 x^{6} - 2250 x^{5} - 3770 x^{4} + 2230 x^{3} + 500 x^{2} - 250 x - 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(114797420862925288238525390625=3^{4}\cdot 5^{16}\cdot 23^{6}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{8} + \frac{1}{5} a^{5} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{8} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{8} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{8} - \frac{1}{5} a^{5} + \frac{2}{5} a^{3}$, $\frac{1}{75} a^{16} + \frac{1}{15} a^{15} + \frac{1}{15} a^{14} - \frac{1}{15} a^{13} - \frac{1}{25} a^{11} + \frac{1}{15} a^{10} + \frac{4}{15} a^{7} + \frac{1}{75} a^{6} - \frac{1}{15} a^{5} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{75} a^{17} - \frac{1}{15} a^{15} - \frac{1}{15} a^{13} - \frac{1}{25} a^{12} + \frac{1}{15} a^{11} + \frac{1}{15} a^{10} + \frac{7}{15} a^{8} - \frac{8}{25} a^{7} - \frac{1}{3} a^{6} - \frac{7}{15} a^{5} - \frac{2}{5} a^{4} - \frac{1}{15} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{225} a^{18} - \frac{1}{225} a^{17} + \frac{1}{15} a^{15} - \frac{2}{45} a^{14} + \frac{22}{225} a^{13} - \frac{22}{225} a^{12} - \frac{2}{45} a^{10} - \frac{2}{45} a^{9} + \frac{91}{225} a^{8} + \frac{23}{75} a^{7} + \frac{2}{45} a^{6} - \frac{7}{45} a^{5} - \frac{13}{45} a^{4} - \frac{8}{45} a^{3} + \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{34036545825} a^{19} + \frac{1093631}{11345515275} a^{18} - \frac{42292211}{6807309165} a^{17} - \frac{7348717}{11345515275} a^{16} - \frac{412639793}{6807309165} a^{15} - \frac{353589751}{11345515275} a^{14} + \frac{41989172}{11345515275} a^{13} + \frac{354465979}{6807309165} a^{12} - \frac{1173983662}{34036545825} a^{11} - \frac{311618644}{6807309165} a^{10} - \frac{912576143}{11345515275} a^{9} - \frac{12842528432}{34036545825} a^{8} - \frac{1301025451}{6807309165} a^{7} + \frac{12577738319}{34036545825} a^{6} + \frac{1099005643}{6807309165} a^{5} + \frac{93775629}{756367685} a^{4} - \frac{482633462}{6807309165} a^{3} - \frac{548141191}{1361461833} a^{2} - \frac{88563710}{1361461833} a + \frac{334215905}{1361461833}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24768064.615 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n794 are not computed |
| Character table for t20n794 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.767625.1, 10.10.2946240703125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $89$ | 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.1 | $x^{2} - 89$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |