Normalized defining polynomial
\( x^{20} - x^{19} - 21 x^{18} + 61 x^{17} - 177 x^{16} - 676 x^{15} + 3960 x^{14} - 4704 x^{13} + 85642 x^{12} + 80254 x^{11} - 2192766 x^{10} - 233250 x^{9} + 17793574 x^{8} + 3352516 x^{7} - 60534112 x^{6} - 40761296 x^{5} + 44334749 x^{4} + 121164707 x^{3} + 136837803 x^{2} + 5360629 x - 56509 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(113631861215080224467348285440000000000=2^{20}\cdot 5^{10}\cdot 13^{4}\cdot 29^{10}\cdot 31^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{9} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{4} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{8} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} + \frac{1}{8} a^{5} + \frac{1}{4} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{3}{8}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{14} + \frac{1}{8} a^{11} - \frac{1}{4} a^{10} + \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{3}{8} a^{6} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{3}{8} a^{5} - \frac{3}{8} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{14} - \frac{1}{8} a^{13} + \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{3}{8} a^{6} - \frac{3}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{11382673722260413091345321950757609189518476516420738028569959994926192} a^{19} + \frac{309206309215018764015127136843797801805203527406772592259293322737301}{5691336861130206545672660975378804594759238258210369014284979997463096} a^{18} - \frac{408085343689173390092588873410950353933258254600118234872267884794239}{11382673722260413091345321950757609189518476516420738028569959994926192} a^{17} - \frac{48922761718730314591245431793845388952413844488638437752506663658435}{5691336861130206545672660975378804594759238258210369014284979997463096} a^{16} + \frac{368433577993927031575721802389262441718054629820796022564394249384367}{11382673722260413091345321950757609189518476516420738028569959994926192} a^{15} - \frac{548115017957130305985970153718556616126180859901397263516034316369485}{11382673722260413091345321950757609189518476516420738028569959994926192} a^{14} - \frac{507959012025655890199556493771079072481120020685548905667580447469625}{11382673722260413091345321950757609189518476516420738028569959994926192} a^{13} + \frac{1273952833964959901025039070210175769549410173242274142579647607512197}{11382673722260413091345321950757609189518476516420738028569959994926192} a^{12} + \frac{464250798663686198770540568417138528322116616699341235928514739395719}{11382673722260413091345321950757609189518476516420738028569959994926192} a^{11} + \frac{1997788294282413688609897773145336134708340711657671267480306139518789}{11382673722260413091345321950757609189518476516420738028569959994926192} a^{10} + \frac{432724292328784372322220648763499183053236570212945174598367143936463}{11382673722260413091345321950757609189518476516420738028569959994926192} a^{9} + \frac{2271592801899436279419232607246852792925182583225480224179907951395091}{11382673722260413091345321950757609189518476516420738028569959994926192} a^{8} - \frac{2428593836313230365564295803941428408211516625069138551156570560312931}{11382673722260413091345321950757609189518476516420738028569959994926192} a^{7} + \frac{2003318382960737102957251925242522368419890643912299674706507585731481}{11382673722260413091345321950757609189518476516420738028569959994926192} a^{6} + \frac{2840748136533680481044212010181582170727898933370892674881069954460133}{11382673722260413091345321950757609189518476516420738028569959994926192} a^{5} - \frac{4760634258862329367859438644411497605604568368549603470040621168077569}{11382673722260413091345321950757609189518476516420738028569959994926192} a^{4} - \frac{297830463414974646458100860446117459464575265515041648056239476519837}{2845668430565103272836330487689402297379619129105184507142489998731548} a^{3} + \frac{4424881739205442145708149346369061201506474286320472919147283120544245}{11382673722260413091345321950757609189518476516420738028569959994926192} a^{2} + \frac{429821019348122653438931448286642877465541439204583949539188140026881}{2845668430565103272836330487689402297379619129105184507142489998731548} a - \frac{2649550584881544086142401123670742810877520450432907581243644535373585}{11382673722260413091345321950757609189518476516420738028569959994926192}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 463600803485 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 228 conjugacy class representatives for t20n1028 are not computed |
| Character table for t20n1028 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.109268775200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.6.5.2 | $x^{6} + 58$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 29.10.5.1 | $x^{10} - 1682 x^{6} + 707281 x^{2} - 2481849029$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.6.4.3 | $x^{6} + 713 x^{3} + 138384$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 31.8.0.1 | $x^{8} - x + 22$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |