Normalized defining polynomial
\( x^{20} - 10 x^{19} + 60 x^{18} - 255 x^{17} + 724 x^{16} - 1304 x^{15} + 634 x^{14} + 4612 x^{13} - 15282 x^{12} + 22350 x^{11} - 7523 x^{10} - 38599 x^{9} + 80863 x^{8} - 65988 x^{7} - 7603 x^{6} + 76578 x^{5} - 61914 x^{4} + 2808 x^{3} + 15212 x^{2} - 5364 x + 500 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(112513399737993586392134420000000=2^{8}\cdot 5^{7}\cdot 17^{8}\cdot 73^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{50} a^{14} + \frac{3}{50} a^{13} + \frac{2}{25} a^{12} - \frac{3}{50} a^{11} - \frac{2}{5} a^{10} + \frac{9}{50} a^{9} + \frac{8}{25} a^{8} - \frac{3}{10} a^{7} + \frac{4}{25} a^{6} - \frac{19}{50} a^{5} - \frac{13}{50} a^{4} + \frac{9}{50} a^{3} + \frac{3}{25} a^{2} + \frac{7}{25} a$, $\frac{1}{250} a^{15} + \frac{1}{50} a^{13} - \frac{1}{50} a^{12} + \frac{9}{250} a^{11} + \frac{99}{250} a^{10} - \frac{71}{250} a^{9} - \frac{103}{250} a^{8} - \frac{57}{250} a^{7} - \frac{23}{250} a^{6} - \frac{8}{125} a^{5} + \frac{39}{125} a^{4} - \frac{11}{250} a^{3} - \frac{17}{125} a^{2} - \frac{61}{125} a$, $\frac{1}{1250} a^{16} + \frac{1}{625} a^{15} + \frac{1}{250} a^{14} - \frac{19}{250} a^{13} - \frac{101}{1250} a^{12} + \frac{417}{1250} a^{11} + \frac{77}{1250} a^{10} + \frac{121}{250} a^{9} + \frac{137}{1250} a^{8} - \frac{537}{1250} a^{7} - \frac{6}{625} a^{6} + \frac{73}{625} a^{5} + \frac{69}{250} a^{4} + \frac{297}{625} a^{3} + \frac{11}{125} a^{2} - \frac{222}{625} a + \frac{2}{5}$, $\frac{1}{1250} a^{17} + \frac{1}{1250} a^{15} - \frac{1}{250} a^{14} - \frac{111}{1250} a^{13} + \frac{19}{1250} a^{12} - \frac{307}{1250} a^{11} - \frac{49}{1250} a^{10} + \frac{327}{1250} a^{9} - \frac{461}{1250} a^{8} - \frac{94}{625} a^{7} - \frac{28}{125} a^{6} - \frac{597}{1250} a^{5} - \frac{73}{625} a^{4} - \frac{89}{625} a^{3} - \frac{32}{625} a^{2} + \frac{19}{625} a + \frac{1}{5}$, $\frac{1}{66079413212500} a^{18} - \frac{9}{66079413212500} a^{17} - \frac{25748858163}{66079413212500} a^{16} - \frac{29163393671}{33039706606250} a^{15} + \frac{73653979116}{16519853303125} a^{14} + \frac{3113571407949}{33039706606250} a^{13} + \frac{934790345059}{16519853303125} a^{12} - \frac{6587480343806}{16519853303125} a^{11} - \frac{501360858893}{3303970660625} a^{10} - \frac{2008431748237}{33039706606250} a^{9} - \frac{27876397337407}{66079413212500} a^{8} - \frac{1225843550027}{6607941321250} a^{7} + \frac{6045286383441}{66079413212500} a^{6} + \frac{441650616883}{66079413212500} a^{5} - \frac{2919174478497}{33039706606250} a^{4} - \frac{11407555856489}{33039706606250} a^{3} + \frac{10317218128087}{33039706606250} a^{2} + \frac{1451166155281}{16519853303125} a + \frac{63121655434}{132158826425}$, $\frac{1}{12224691444312500} a^{19} + \frac{83}{12224691444312500} a^{18} - \frac{4730603079721}{12224691444312500} a^{17} + \frac{1799610373321}{6112345722156250} a^{16} - \frac{1141679739526}{611234572215625} a^{15} + \frac{37546998140443}{6112345722156250} a^{14} - \frac{359286531026359}{6112345722156250} a^{13} + \frac{238268140764472}{3056172861078125} a^{12} + \frac{2576139075966401}{6112345722156250} a^{11} - \frac{3010912550689807}{6112345722156250} a^{10} - \frac{24742239495493}{488987657772500} a^{9} + \frac{2569854146911163}{6112345722156250} a^{8} + \frac{1545974427043081}{12224691444312500} a^{7} + \frac{369581091825369}{2444938288862500} a^{6} - \frac{1498412121666059}{6112345722156250} a^{5} - \frac{335594082930749}{3056172861078125} a^{4} - \frac{688745576520371}{6112345722156250} a^{3} - \frac{319737957388212}{3056172861078125} a^{2} - \frac{598004708867488}{3056172861078125} a - \frac{1884451398007}{24449382888625}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2002419387.28 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 188 conjugacy class representatives for t20n968 are not computed |
| Character table for t20n968 is not computed |
Intermediate fields
| 5.5.6160324.1, 10.10.948739794624400.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.8.6.3 | $x^{8} + 25 x^{4} + 200$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.12.8.1 | $x^{12} - 51 x^{9} + 867 x^{6} - 4913 x^{3} + 111166451$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $73$ | 73.3.2.3 | $x^{3} - 1825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 73.3.2.3 | $x^{3} - 1825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |