Normalized defining polynomial
\( x^{20} - 33 x^{18} - 53 x^{17} + 458 x^{16} + 1114 x^{15} - 2937 x^{14} - 9566 x^{13} + 10148 x^{12} + 41938 x^{11} - 26077 x^{10} - 91579 x^{9} + 49188 x^{8} + 92368 x^{7} - 47697 x^{6} - 31838 x^{5} + 12895 x^{4} - 7970 x^{3} + 5579 x^{2} + 5371 x - 1759 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1069756574259831337445098876953125=5^{15}\cdot 19^{5}\cdot 1699^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 1699$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18} - \frac{7}{19} a^{17} - \frac{1}{19} a^{16} - \frac{3}{19} a^{15} + \frac{2}{19} a^{14} - \frac{8}{19} a^{13} - \frac{8}{19} a^{12} - \frac{7}{19} a^{11} - \frac{3}{19} a^{10} - \frac{7}{19} a^{9} - \frac{4}{19} a^{8} - \frac{4}{19} a^{7} - \frac{2}{19} a^{6} - \frac{4}{19} a^{5} - \frac{2}{19} a^{4} - \frac{7}{19} a^{3} + \frac{1}{19} a^{2} + \frac{8}{19} a - \frac{4}{19}$, $\frac{1}{765626256635696752800078211719305441884526981} a^{19} + \frac{19363728505624902650620284639647851735693551}{765626256635696752800078211719305441884526981} a^{18} + \frac{343729270725352556674930014548697956659560656}{765626256635696752800078211719305441884526981} a^{17} - \frac{220702880697908904244881544652656406415109553}{765626256635696752800078211719305441884526981} a^{16} + \frac{108133619564182304592584387198373916646433502}{765626256635696752800078211719305441884526981} a^{15} + \frac{185312759875958729586154971097101851636321266}{765626256635696752800078211719305441884526981} a^{14} - \frac{38117707810202357678937461457689411145307381}{765626256635696752800078211719305441884526981} a^{13} + \frac{35261729906037595080083583786633890279595453}{765626256635696752800078211719305441884526981} a^{12} - \frac{366646284011558052489535795720229618358807491}{765626256635696752800078211719305441884526981} a^{11} + \frac{324050786535949954608261062307175206203040733}{765626256635696752800078211719305441884526981} a^{10} - \frac{556521481023360294631047076857777958592852}{2370359927664695829102409324208375981066647} a^{9} - \frac{11400380453590628192944396349624914161678059}{45036838625629220752945777159959143640266293} a^{8} + \frac{297251129519535289134799209304004307933787945}{765626256635696752800078211719305441884526981} a^{7} + \frac{380887599896092203375750740570626594030994455}{765626256635696752800078211719305441884526981} a^{6} - \frac{318900593794797378634377551220664135896638058}{765626256635696752800078211719305441884526981} a^{5} + \frac{202085267776969125751343402969976348016825708}{765626256635696752800078211719305441884526981} a^{4} + \frac{215617708248907784882833293417467452747705547}{765626256635696752800078211719305441884526981} a^{3} + \frac{150736086520602434277950869149560466706493214}{765626256635696752800078211719305441884526981} a^{2} + \frac{136179914099391642494554917053178016212900191}{765626256635696752800078211719305441884526981} a + \frac{341250927539945704761357300946907946776535122}{765626256635696752800078211719305441884526981}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1856215114.59 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n771 are not computed |
| Character table for t20n771 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.3256446753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | R | $20$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1699 | Data not computed | ||||||