Normalized defining polynomial
\( x^{20} - 141 x^{18} + 8100 x^{16} - 247742 x^{14} + 4407877 x^{12} - 46066504 x^{10} + 269167585 x^{8} - 796090326 x^{6} + 1098047444 x^{4} - 636927538 x^{2} + 3007693 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(105374376135245356088725314843202362306199552=2^{20}\cdot 13^{7}\cdot 101^{10}\cdot 347^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $158.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 101, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{13} a^{16} + \frac{2}{13} a^{14} + \frac{1}{13} a^{12} - \frac{1}{13} a^{10} + \frac{6}{13} a^{8} - \frac{3}{13} a^{6} - \frac{2}{13} a^{4} - \frac{5}{13} a^{2}$, $\frac{1}{13} a^{17} + \frac{2}{13} a^{15} + \frac{1}{13} a^{13} - \frac{1}{13} a^{11} + \frac{6}{13} a^{9} - \frac{3}{13} a^{7} - \frac{2}{13} a^{5} - \frac{5}{13} a^{3}$, $\frac{1}{42258650214251056541500144059803677594949} a^{18} + \frac{302410721047550689162926798324625819280}{42258650214251056541500144059803677594949} a^{16} - \frac{9929124087645507978747694102173543172542}{42258650214251056541500144059803677594949} a^{14} + \frac{1933437818075762088819669724205688319832}{42258650214251056541500144059803677594949} a^{12} - \frac{11709505445629777711363079535280467628048}{42258650214251056541500144059803677594949} a^{10} + \frac{17691479376215933524367899259286498115526}{42258650214251056541500144059803677594949} a^{8} + \frac{5111041059159265219366041759066505594865}{42258650214251056541500144059803677594949} a^{6} - \frac{19859405162776814124378166574216879409794}{42258650214251056541500144059803677594949} a^{4} - \frac{159530128743493786806012423223844095852}{3250665401096235118576934158446436738073} a^{2} + \frac{24049784461002716513599457746450673040}{250051184699710393736687242957418210621}$, $\frac{1}{1563570057927289092035505330212736071013113} a^{19} - \frac{2948254680048684429414007360121810918793}{1563570057927289092035505330212736071013113} a^{17} + \frac{575190648109676813365100454418185069680598}{1563570057927289092035505330212736071013113} a^{15} - \frac{677455631011037377693759569391099589937425}{1563570057927289092035505330212736071013113} a^{13} + \frac{202834411026721740114714574922184357084770}{1563570057927289092035505330212736071013113} a^{11} - \frac{44071163244612533728593849751195799907861}{1563570057927289092035505330212736071013113} a^{9} + \frac{606484140261962762156098861071657302138370}{1563570057927289092035505330212736071013113} a^{7} - \frac{689496477788601248551226603214182847452832}{1563570057927289092035505330212736071013113} a^{5} + \frac{40098710607909879604800633692920487814129}{120274619840560699387346563862518159308701} a^{3} + \frac{2024459262058685866407097401405796358008}{9251893833889284568257427989424473792977} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 647131009893000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15360 |
| The 90 conjugacy class representatives for t20n466 are not computed |
| Character table for t20n466 is not computed |
Intermediate fields
| \(\Q(\sqrt{101}) \), 5.3.4511.1, 10.6.213871306817009621.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101 | Data not computed | ||||||
| 347 | Data not computed | ||||||