Properties

Label 20.12.1037458537...3125.1
Degree $20$
Signature $[12, 4]$
Discriminant $5^{13}\cdot 419^{2}\cdot 695771^{2}$
Root discriminant $19.99$
Ramified primes $5, 419, 695771$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1039

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -10, -34, 61, 178, -186, -406, 355, 452, -400, -175, 219, -89, -28, 90, -18, -13, 7, -5, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - 5*x^18 + 7*x^17 - 13*x^16 - 18*x^15 + 90*x^14 - 28*x^13 - 89*x^12 + 219*x^11 - 175*x^10 - 400*x^9 + 452*x^8 + 355*x^7 - 406*x^6 - 186*x^5 + 178*x^4 + 61*x^3 - 34*x^2 - 10*x + 1)
 
gp: K = bnfinit(x^20 - x^19 - 5*x^18 + 7*x^17 - 13*x^16 - 18*x^15 + 90*x^14 - 28*x^13 - 89*x^12 + 219*x^11 - 175*x^10 - 400*x^9 + 452*x^8 + 355*x^7 - 406*x^6 - 186*x^5 + 178*x^4 + 61*x^3 - 34*x^2 - 10*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} - 5 x^{18} + 7 x^{17} - 13 x^{16} - 18 x^{15} + 90 x^{14} - 28 x^{13} - 89 x^{12} + 219 x^{11} - 175 x^{10} - 400 x^{9} + 452 x^{8} + 355 x^{7} - 406 x^{6} - 186 x^{5} + 178 x^{4} + 61 x^{3} - 34 x^{2} - 10 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(103745853703303712158203125=5^{13}\cdot 419^{2}\cdot 695771^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 419, 695771$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{143} a^{18} - \frac{3}{13} a^{17} - \frac{30}{143} a^{16} + \frac{32}{143} a^{15} - \frac{67}{143} a^{14} - \frac{5}{143} a^{13} + \frac{3}{13} a^{12} + \frac{31}{143} a^{11} - \frac{3}{143} a^{10} - \frac{20}{143} a^{9} - \frac{10}{143} a^{8} - \frac{53}{143} a^{7} - \frac{5}{13} a^{6} + \frac{63}{143} a^{5} - \frac{24}{143} a^{4} - \frac{25}{143} a^{3} + \frac{38}{143} a^{2} - \frac{1}{11} a + \frac{59}{143}$, $\frac{1}{270378013477} a^{19} - \frac{106329526}{270378013477} a^{18} + \frac{1484316956}{5752723691} a^{17} + \frac{5900024969}{270378013477} a^{16} + \frac{62738677160}{270378013477} a^{15} + \frac{7688040570}{270378013477} a^{14} + \frac{133955010142}{270378013477} a^{13} - \frac{3809126443}{20798308729} a^{12} + \frac{819649609}{270378013477} a^{11} - \frac{53466343570}{270378013477} a^{10} - \frac{7031162090}{24579819407} a^{9} - \frac{44905532599}{270378013477} a^{8} + \frac{36854595733}{270378013477} a^{7} - \frac{37469008679}{270378013477} a^{6} + \frac{82673115508}{270378013477} a^{5} - \frac{46801174829}{270378013477} a^{4} + \frac{62960152322}{270378013477} a^{3} - \frac{19263823842}{270378013477} a^{2} + \frac{18959917971}{270378013477} a - \frac{38735862937}{270378013477}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 479519.086931 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1039:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 14745600
The 378 conjugacy class representatives for t20n1039 are not computed
Character table for t20n1039 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.10.911025153125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ $20$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.12.9.1$x^{12} - 10 x^{8} - 375 x^{4} - 2000$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
419Data not computed
695771Data not computed