Normalized defining polynomial
\( x^{20} - 20 x^{18} + 90 x^{16} - 64 x^{15} - 400 x^{14} - 160 x^{13} + 3780 x^{12} + 3680 x^{11} + 8048 x^{10} + 36480 x^{9} + 125080 x^{8} + 354560 x^{7} - 875040 x^{6} - 1957440 x^{5} + 1348580 x^{4} + 1748160 x^{3} - 827600 x^{2} + 64000 x + 5128 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1017724340910230458282803200000000000000000000=2^{75}\cdot 5^{20}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $177.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{32} a^{12} - \frac{1}{4} a^{11} + \frac{1}{8} a^{10} - \frac{1}{16} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{5}{16} a^{4} + \frac{1}{4} a^{2} + \frac{1}{8}$, $\frac{1}{32} a^{13} + \frac{1}{8} a^{11} - \frac{1}{16} a^{9} + \frac{1}{4} a^{7} + \frac{5}{16} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{8} a$, $\frac{1}{32} a^{14} - \frac{1}{16} a^{10} + \frac{5}{16} a^{6} - \frac{1}{2} a^{5} + \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{32} a^{15} - \frac{1}{16} a^{11} + \frac{5}{16} a^{7} - \frac{1}{2} a^{6} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{16} - \frac{1}{4} a^{10} + \frac{3}{16} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{32} a^{17} - \frac{1}{4} a^{11} + \frac{3}{16} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{64} a^{18} + \frac{3}{32} a^{10} - \frac{1}{4} a^{9} + \frac{3}{8} a^{6} + \frac{1}{4} a^{4} + \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{52542816817164655271919218048693206421547497024} a^{19} + \frac{336947694821053381452923160326962744290790663}{52542816817164655271919218048693206421547497024} a^{18} + \frac{9163334558901520079555960390225272120251304}{820981512768197738623737782010831350336679641} a^{17} - \frac{306023571278946304237515379363074648168839371}{26271408408582327635959609024346603210773748512} a^{16} + \frac{162188942756412609296558336950047597561541175}{13135704204291163817979804512173301605386874256} a^{15} - \frac{406361586124763814083061873690392796385373955}{26271408408582327635959609024346603210773748512} a^{14} - \frac{184234782782131771109351223043169830847465363}{26271408408582327635959609024346603210773748512} a^{13} - \frac{62958316810428816363234252175318351643340625}{26271408408582327635959609024346603210773748512} a^{12} + \frac{5770378839069418347190390683913492320882887443}{26271408408582327635959609024346603210773748512} a^{11} - \frac{501624206728265747336177922640154034682355945}{26271408408582327635959609024346603210773748512} a^{10} + \frac{2144324608916874515278215086218370273772237127}{13135704204291163817979804512173301605386874256} a^{9} - \frac{101548846555118661686912178712767545469057509}{1641963025536395477247475564021662700673359282} a^{8} + \frac{71323940036199856850594916722715578565907612}{820981512768197738623737782010831350336679641} a^{7} - \frac{2000750592996812274685053537298989262834416193}{13135704204291163817979804512173301605386874256} a^{6} - \frac{2532827169247643111331501502692901909186537731}{13135704204291163817979804512173301605386874256} a^{5} - \frac{115675745421381544838281335642579086067475509}{13135704204291163817979804512173301605386874256} a^{4} - \frac{1784231955992260774525298566584718777790622367}{6567852102145581908989902256086650802693437128} a^{3} + \frac{1332448507448429771595462587213785960034780989}{3283926051072790954494951128043325401346718564} a^{2} + \frac{950752893878684947925435748831754398450341161}{6567852102145581908989902256086650802693437128} a - \frac{2294650353112842285588988237771995258218559167}{6567852102145581908989902256086650802693437128}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6087162868560000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 57600 |
| The 70 conjugacy class representatives for t20n654 are not computed |
| Character table for t20n654 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 10.6.1409873346560000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.10.8.1 | $x^{10} - 7 x^{5} + 147$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |