Properties

Label 20.12.1013847002...3125.1
Degree $20$
Signature $[12, 4]$
Discriminant $3^{12}\cdot 5^{12}\cdot 691^{4}\cdot 342740261$
Root discriminant $50.15$
Ramified primes $3, 5, 691, 342740261$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1037

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-64, 400, 2207, 696, -7676, -6211, 12488, 11928, -13233, -11284, 10202, 5776, -5530, -1394, 1904, 0, -357, 69, 24, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 24*x^18 + 69*x^17 - 357*x^16 + 1904*x^14 - 1394*x^13 - 5530*x^12 + 5776*x^11 + 10202*x^10 - 11284*x^9 - 13233*x^8 + 11928*x^7 + 12488*x^6 - 6211*x^5 - 7676*x^4 + 696*x^3 + 2207*x^2 + 400*x - 64)
 
gp: K = bnfinit(x^20 - 10*x^19 + 24*x^18 + 69*x^17 - 357*x^16 + 1904*x^14 - 1394*x^13 - 5530*x^12 + 5776*x^11 + 10202*x^10 - 11284*x^9 - 13233*x^8 + 11928*x^7 + 12488*x^6 - 6211*x^5 - 7676*x^4 + 696*x^3 + 2207*x^2 + 400*x - 64, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 24 x^{18} + 69 x^{17} - 357 x^{16} + 1904 x^{14} - 1394 x^{13} - 5530 x^{12} + 5776 x^{11} + 10202 x^{10} - 11284 x^{9} - 13233 x^{8} + 11928 x^{7} + 12488 x^{6} - 6211 x^{5} - 7676 x^{4} + 696 x^{3} + 2207 x^{2} + 400 x - 64 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(10138470020238062156310415283203125=3^{12}\cdot 5^{12}\cdot 691^{4}\cdot 342740261\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $50.15$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 691, 342740261$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{18752} a^{18} - \frac{9}{18752} a^{17} - \frac{3673}{18752} a^{16} - \frac{1979}{4688} a^{15} - \frac{1193}{18752} a^{14} - \frac{3849}{18752} a^{13} - \frac{8881}{18752} a^{12} + \frac{8325}{18752} a^{11} - \frac{3821}{18752} a^{10} - \frac{3621}{18752} a^{9} - \frac{3075}{18752} a^{8} + \frac{7217}{18752} a^{7} + \frac{1047}{2344} a^{6} - \frac{707}{2344} a^{5} + \frac{43}{1172} a^{4} + \frac{1581}{18752} a^{3} + \frac{6833}{18752} a^{2} + \frac{8673}{18752} a - \frac{661}{2344}$, $\frac{1}{18752} a^{19} - \frac{1877}{9376} a^{17} - \frac{3469}{18752} a^{16} + \frac{2571}{18752} a^{15} + \frac{2083}{9376} a^{14} - \frac{3009}{9376} a^{13} + \frac{851}{4688} a^{12} - \frac{61}{293} a^{11} - \frac{253}{9376} a^{10} + \frac{115}{1172} a^{9} - \frac{853}{9376} a^{8} - \frac{1679}{18752} a^{7} - \frac{165}{586} a^{6} + \frac{755}{2344} a^{5} + \frac{7773}{18752} a^{4} + \frac{1155}{9376} a^{3} - \frac{2419}{9376} a^{2} - \frac{2239}{18752} a + \frac{1083}{2344}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 9327853206.82 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1037:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 14745600
The 384 conjugacy class representatives for t20n1037 are not computed
Character table for t20n1037 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.6.5438807015625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ R R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ $16{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.12.12.6$x^{12} + 24 x^{11} - 3 x^{10} + 81 x^{9} - 18 x^{8} + 54 x^{7} + 108 x^{5} - 54 x^{4} - 27 x^{3} - 81 x - 81$$3$$4$$12$12T39$[3/2, 3/2]_{2}^{4}$
$5$5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
691Data not computed
342740261Data not computed