Normalized defining polynomial
\( x^{20} - 6 x^{19} + 4 x^{18} + 48 x^{17} - 131 x^{16} - 68 x^{15} + 693 x^{14} - 240 x^{13} - 1531 x^{12} + 933 x^{11} + 682 x^{10} - 364 x^{9} + 2526 x^{8} - 8406 x^{7} + 2234 x^{6} + 19476 x^{5} - 12724 x^{4} - 6111 x^{3} + 2515 x^{2} - 4635 x + 1277 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9331576415771428587203963681527=-\,11^{16}\cdot 727^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 727$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{9178899778234699738599537751646170831574591} a^{19} + \frac{3320728074567340195775046838542832092925667}{9178899778234699738599537751646170831574591} a^{18} - \frac{4118489667606907714426865551465124895940505}{9178899778234699738599537751646170831574591} a^{17} + \frac{2254886917498870256706485809596637513700360}{9178899778234699738599537751646170831574591} a^{16} - \frac{4481706632024692712566011189101602424200175}{9178899778234699738599537751646170831574591} a^{15} - \frac{3892401412314519617259420278040449924202528}{9178899778234699738599537751646170831574591} a^{14} - \frac{671847414369637932773016458432865819775512}{9178899778234699738599537751646170831574591} a^{13} + \frac{1462894534074525633744847245070527829206889}{9178899778234699738599537751646170831574591} a^{12} + \frac{2805805944995443762498767389000541645844528}{9178899778234699738599537751646170831574591} a^{11} - \frac{408656338126455392112148131816069573962504}{9178899778234699738599537751646170831574591} a^{10} + \frac{1896166777950859690401797346930334707345459}{9178899778234699738599537751646170831574591} a^{9} + \frac{2553785773408256055567142972456099635733548}{9178899778234699738599537751646170831574591} a^{8} - \frac{207789331081984324508817307482377315810318}{9178899778234699738599537751646170831574591} a^{7} + \frac{197649738126077314259573898182522043595719}{9178899778234699738599537751646170831574591} a^{6} - \frac{1107384951861524346313079899556520586989461}{9178899778234699738599537751646170831574591} a^{5} + \frac{3661602881566772513119992312578988239449987}{9178899778234699738599537751646170831574591} a^{4} + \frac{3206160505870780468164325916540408533488347}{9178899778234699738599537751646170831574591} a^{3} - \frac{95124461722539725198641269230099458137889}{9178899778234699738599537751646170831574591} a^{2} - \frac{4141664889544802137042221895103192381300831}{9178899778234699738599537751646170831574591} a - \frac{2803591727986452697371537734342275935867615}{9178899778234699738599537751646170831574591}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 86307674.8427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 50 conjugacy class representatives for t20n303 are not computed |
| Character table for t20n303 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.155838906487.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 727 | Data not computed | ||||||