Normalized defining polynomial
\( x^{20} - 2 x^{19} - 17 x^{18} + 28 x^{17} + 49 x^{16} - 121 x^{15} + 237 x^{14} - 31 x^{13} - 1413 x^{12} + 2199 x^{11} + 328 x^{10} - 10864 x^{9} + 10725 x^{8} + 30897 x^{7} - 20987 x^{6} - 48171 x^{5} + 3738 x^{4} + 30453 x^{3} + 12300 x^{2} + 661 x - 109 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9331576415771428587203963681527=-\,11^{16}\cdot 727^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 727$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{23739840943936329594003295850241637373} a^{19} - \frac{8775394915786397095570312386569072133}{23739840943936329594003295850241637373} a^{18} + \frac{907396262082373815485140683659063381}{23739840943936329594003295850241637373} a^{17} + \frac{11063523446434946468200678662793977331}{23739840943936329594003295850241637373} a^{16} - \frac{8881656593012885243075963433222621104}{23739840943936329594003295850241637373} a^{15} + \frac{10479502964071603209906930578416363917}{23739840943936329594003295850241637373} a^{14} + \frac{7491995654869461205953733754199299542}{23739840943936329594003295850241637373} a^{13} - \frac{5633969529567928337657222660286927214}{23739840943936329594003295850241637373} a^{12} - \frac{3043499627373120362956298230196148566}{23739840943936329594003295850241637373} a^{11} + \frac{5234930372249119241337726639869060878}{23739840943936329594003295850241637373} a^{10} - \frac{4869899868363738383460639861335805248}{23739840943936329594003295850241637373} a^{9} + \frac{1530603125799148280692643552566546530}{23739840943936329594003295850241637373} a^{8} - \frac{11461538684044677934903483670663813591}{23739840943936329594003295850241637373} a^{7} + \frac{10610020314170242459215491187626582386}{23739840943936329594003295850241637373} a^{6} + \frac{8920191991049729211673050162558539730}{23739840943936329594003295850241637373} a^{5} - \frac{3459948128178400560880153312001089070}{23739840943936329594003295850241637373} a^{4} + \frac{11426167133785506367599460385846753300}{23739840943936329594003295850241637373} a^{3} + \frac{11591168399745460966889205986220313644}{23739840943936329594003295850241637373} a^{2} - \frac{10403881302965646035216317696917469571}{23739840943936329594003295850241637373} a + \frac{5768352714907081725322326700179050118}{23739840943936329594003295850241637373}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 86307674.8427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 50 conjugacy class representatives for t20n303 are not computed |
| Character table for t20n303 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.155838906487.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 727 | Data not computed | ||||||