Normalized defining polynomial
\( x^{20} - 10 x^{19} + 41 x^{18} - 84 x^{17} + 38 x^{16} + 308 x^{15} - 1032 x^{14} + 1630 x^{13} - 1150 x^{12} - 718 x^{11} + 2804 x^{10} - 3378 x^{9} + 2060 x^{8} - 180 x^{7} - 819 x^{6} + 748 x^{5} - 310 x^{4} + 42 x^{3} + 17 x^{2} - 8 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9228883441492376875877531648=-\,2^{20}\cdot 11^{18}\cdot 1583\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 1583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{89} a^{16} - \frac{8}{89} a^{15} - \frac{43}{89} a^{14} - \frac{4}{89} a^{13} - \frac{35}{89} a^{12} - \frac{13}{89} a^{11} + \frac{13}{89} a^{9} + \frac{22}{89} a^{8} - \frac{18}{89} a^{7} + \frac{7}{89} a^{6} + \frac{19}{89} a^{5} + \frac{28}{89} a^{4} + \frac{42}{89} a^{3} - \frac{25}{89} a^{2} + \frac{14}{89} a - \frac{16}{89}$, $\frac{1}{89} a^{17} - \frac{18}{89} a^{15} + \frac{8}{89} a^{14} + \frac{22}{89} a^{13} - \frac{26}{89} a^{12} - \frac{15}{89} a^{11} + \frac{13}{89} a^{10} + \frac{37}{89} a^{9} - \frac{20}{89} a^{8} + \frac{41}{89} a^{7} - \frac{14}{89} a^{6} + \frac{2}{89} a^{5} - \frac{1}{89} a^{4} + \frac{44}{89} a^{3} - \frac{8}{89} a^{2} + \frac{7}{89} a - \frac{39}{89}$, $\frac{1}{3827} a^{18} - \frac{9}{3827} a^{17} + \frac{14}{3827} a^{16} + \frac{92}{3827} a^{15} + \frac{265}{3827} a^{14} - \frac{352}{3827} a^{13} + \frac{167}{3827} a^{12} - \frac{1069}{3827} a^{11} + \frac{365}{3827} a^{10} - \frac{1450}{3827} a^{9} - \frac{1389}{3827} a^{8} - \frac{425}{3827} a^{7} + \frac{708}{3827} a^{6} + \frac{1212}{3827} a^{5} + \frac{1839}{3827} a^{4} - \frac{395}{3827} a^{3} - \frac{9}{3827} a^{2} + \frac{435}{3827} a - \frac{1407}{3827}$, $\frac{1}{3827} a^{19} + \frac{19}{3827} a^{17} + \frac{3}{3827} a^{16} + \frac{1265}{3827} a^{15} + \frac{485}{3827} a^{14} - \frac{249}{3827} a^{13} + \frac{1896}{3827} a^{12} - \frac{97}{3827} a^{11} - \frac{874}{3827} a^{10} + \frac{1256}{3827} a^{9} - \frac{241}{3827} a^{8} + \frac{452}{3827} a^{7} + \frac{1048}{3827} a^{6} + \frac{1180}{3827} a^{5} - \frac{1431}{3827} a^{4} - \frac{1156}{3827} a^{3} + \frac{1214}{3827} a^{2} + \frac{100}{3827} a - \frac{1096}{3827}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3068456.42972 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 136 conjugacy class representatives for t20n409 are not computed |
| Character table for t20n409 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 11 | Data not computed | ||||||
| 1583 | Data not computed | ||||||