Normalized defining polynomial
\( x^{20} - 4 x^{19} - 28 x^{18} + 82 x^{17} + 227 x^{16} + 150 x^{15} + 165 x^{14} - 12260 x^{13} - 15111 x^{12} + 57640 x^{11} + 79121 x^{10} + 238244 x^{9} + 9741 x^{8} - 1466670 x^{7} + 764544 x^{6} + 2289288 x^{5} - 2361935 x^{4} - 523652 x^{3} + 1541335 x^{2} - 635210 x + 69001 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8925264962285150499914914463751340032=-\,2^{20}\cdot 3^{10}\cdot 7^{8}\cdot 11^{9}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} - \frac{3}{11} a^{14} - \frac{5}{11} a^{13} - \frac{4}{11} a^{12} + \frac{5}{11} a^{10} - \frac{4}{11} a^{9} - \frac{5}{11} a^{8} - \frac{4}{11} a^{7} - \frac{5}{11} a^{6} - \frac{2}{11} a^{5} - \frac{4}{11} a^{4} + \frac{5}{11} a^{3} - \frac{1}{11} a^{2} - \frac{1}{11} a + \frac{2}{11}$, $\frac{1}{77} a^{16} + \frac{3}{77} a^{15} - \frac{12}{77} a^{14} + \frac{32}{77} a^{13} - \frac{2}{77} a^{12} + \frac{5}{77} a^{11} - \frac{18}{77} a^{10} - \frac{29}{77} a^{9} - \frac{23}{77} a^{8} + \frac{4}{77} a^{7} - \frac{10}{77} a^{6} - \frac{5}{77} a^{5} - \frac{19}{77} a^{4} + \frac{29}{77} a^{3} - \frac{1}{11} a^{2} - \frac{15}{77} a + \frac{1}{77}$, $\frac{1}{77} a^{17} + \frac{5}{77} a^{14} + \frac{4}{11} a^{13} + \frac{4}{77} a^{12} - \frac{3}{7} a^{11} - \frac{24}{77} a^{10} - \frac{20}{77} a^{9} - \frac{32}{77} a^{8} - \frac{29}{77} a^{7} - \frac{3}{77} a^{6} + \frac{31}{77} a^{5} + \frac{2}{77} a^{4} + \frac{1}{7} a^{3} - \frac{15}{77} a^{2} + \frac{25}{77} a - \frac{38}{77}$, $\frac{1}{1001} a^{18} + \frac{5}{1001} a^{17} - \frac{6}{1001} a^{16} + \frac{43}{1001} a^{15} - \frac{197}{1001} a^{14} + \frac{365}{1001} a^{13} - \frac{456}{1001} a^{12} + \frac{474}{1001} a^{11} - \frac{214}{1001} a^{10} - \frac{37}{143} a^{9} - \frac{331}{1001} a^{8} - \frac{36}{91} a^{7} + \frac{335}{1001} a^{6} + \frac{75}{1001} a^{5} - \frac{243}{1001} a^{4} + \frac{223}{1001} a^{3} + \frac{1}{77} a^{2} - \frac{10}{91} a + \frac{54}{143}$, $\frac{1}{3527212249949582717483878432779113576671423724043918119} a^{19} + \frac{153559883640466737246432027598281988718155907399135}{320655659086325701589443493889010325151947611276719829} a^{18} + \frac{7497750189600356976788467374228901454200198157021693}{3527212249949582717483878432779113576671423724043918119} a^{17} + \frac{308234881695094789581672630921834643273017855766221}{153357054345634031194951236207787546811801031480170353} a^{16} + \frac{146787411826578861721993550933397150287373750107919368}{3527212249949582717483878432779113576671423724043918119} a^{15} - \frac{161509029962243342861085353866206105295093748617586840}{3527212249949582717483878432779113576671423724043918119} a^{14} + \frac{78863942025866188259407581395934829635156070683334186}{271324019226890978267990648675316428974724901849532163} a^{13} + \frac{153487376414370179018716070434796341102830737381057345}{3527212249949582717483878432779113576671423724043918119} a^{12} - \frac{45591498056552265968570031649764261235272778446353049}{271324019226890978267990648675316428974724901849532163} a^{11} + \frac{805717570310045699935873414079237358711127690911301395}{3527212249949582717483878432779113576671423724043918119} a^{10} + \frac{1635526658231816095446839356994712709742119560763934121}{3527212249949582717483878432779113576671423724043918119} a^{9} + \frac{433909379153576720632177747747759640508746302625865017}{3527212249949582717483878432779113576671423724043918119} a^{8} - \frac{997803413725480157936687942381398025594418762091854524}{3527212249949582717483878432779113576671423724043918119} a^{7} + \frac{91155229185762353773850864146212873553616817335304638}{503887464278511816783411204682730510953060532006274017} a^{6} - \frac{662557089428386859015047803945021012899862872514648573}{3527212249949582717483878432779113576671423724043918119} a^{5} + \frac{13187422605782051088075015479365693390986838513353385}{3527212249949582717483878432779113576671423724043918119} a^{4} - \frac{1471665233156493021394494565673830513530004985649407937}{3527212249949582717483878432779113576671423724043918119} a^{3} - \frac{18367885748919053000009477220840645603047455902557813}{503887464278511816783411204682730510953060532006274017} a^{2} + \frac{524340622062311005583768156522860336484194715693114417}{3527212249949582717483878432779113576671423724043918119} a - \frac{799282312745891599119182037495213765645012530886991700}{3527212249949582717483878432779113576671423724043918119}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 156231018145 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_{10}^2:C_2^2$ (as 20T106):
| A solvable group of order 400 |
| The 46 conjugacy class representatives for $C_{10}^2:C_2^2$ |
| Character table for $C_{10}^2:C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.2.20592.4, 10.10.249828821987576832.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | R | R | R | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.10.9.3 | $x^{10} - 891$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |