Normalized defining polynomial
\( x^{20} - 4 x^{19} - 26 x^{18} + 116 x^{17} + 147 x^{16} - 1168 x^{15} + 1262 x^{14} + 4360 x^{13} - 20145 x^{12} + 18456 x^{11} + 145308 x^{10} - 283164 x^{9} - 958240 x^{8} + 755896 x^{7} + 3904306 x^{6} + 2146840 x^{5} - 4193927 x^{4} - 6818088 x^{3} - 3970514 x^{2} - 996780 x - 78119 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8925264962285150499914914463751340032=-\,2^{20}\cdot 3^{10}\cdot 7^{8}\cdot 11^{9}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{15} + \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{52} a^{17} - \frac{1}{13} a^{16} - \frac{3}{26} a^{15} + \frac{1}{26} a^{14} - \frac{3}{26} a^{13} - \frac{1}{52} a^{12} - \frac{5}{52} a^{11} - \frac{3}{26} a^{10} - \frac{9}{52} a^{9} + \frac{5}{13} a^{8} - \frac{2}{13} a^{7} + \frac{19}{52} a^{6} - \frac{5}{52} a^{5} - \frac{1}{4} a^{4} + \frac{6}{13} a^{3} - \frac{9}{26} a^{2} + \frac{1}{26} a + \frac{3}{52}$, $\frac{1}{285844} a^{18} - \frac{55}{142922} a^{17} - \frac{20811}{285844} a^{16} - \frac{1953}{71461} a^{15} - \frac{967}{142922} a^{14} + \frac{16105}{285844} a^{13} + \frac{13031}{142922} a^{12} - \frac{2027}{71461} a^{11} - \frac{7303}{285844} a^{10} - \frac{19081}{71461} a^{9} - \frac{17093}{142922} a^{8} + \frac{69481}{285844} a^{7} + \frac{94779}{285844} a^{6} - \frac{47063}{285844} a^{5} + \frac{35340}{71461} a^{4} - \frac{10719}{142922} a^{3} - \frac{121733}{285844} a^{2} + \frac{97889}{285844} a + \frac{9651}{71461}$, $\frac{1}{180872778586471588080044240533809573450223996} a^{19} + \frac{120558571341621033257363576127755707883}{180872778586471588080044240533809573450223996} a^{18} - \frac{800451727113226684480793973134139238659621}{90436389293235794040022120266904786725111998} a^{17} + \frac{2569700971368111571550462143390031773997529}{180872778586471588080044240533809573450223996} a^{16} + \frac{382098813985080047742714933399759544811503}{45218194646617897020011060133452393362555999} a^{15} + \frac{20621056063273424600357323623467578958371163}{180872778586471588080044240533809573450223996} a^{14} - \frac{378393279664646832266612112201374155543278}{3478322665124453616923927702573261027888923} a^{13} + \frac{598590107659288054956826951452326267884601}{13913290660497814467695710810293044111555692} a^{12} - \frac{7363911396315207129373105319553434554680967}{180872778586471588080044240533809573450223996} a^{11} - \frac{19929801652357692546229252127727727828985777}{180872778586471588080044240533809573450223996} a^{10} - \frac{4882544141912006054257236140222147979006898}{45218194646617897020011060133452393362555999} a^{9} - \frac{40996287078001881346004118846034662379894399}{180872778586471588080044240533809573450223996} a^{8} + \frac{39345639896806218874441867005536090868188083}{90436389293235794040022120266904786725111998} a^{7} + \frac{29027590841465025226864766268940712593863997}{180872778586471588080044240533809573450223996} a^{6} - \frac{20423111608273872019926043073639703056076757}{180872778586471588080044240533809573450223996} a^{5} - \frac{69411850937168315520660721552049068874813121}{180872778586471588080044240533809573450223996} a^{4} - \frac{12640249262035347038885717230907888716718741}{45218194646617897020011060133452393362555999} a^{3} + \frac{7125319905459791380893829096052978100427584}{45218194646617897020011060133452393362555999} a^{2} - \frac{78855960320032705805519980965548647554052089}{180872778586471588080044240533809573450223996} a + \frac{73245830544849390464837146172570429653154987}{180872778586471588080044240533809573450223996}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 145012875501 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_{10}^2:C_2^2$ (as 20T106):
| A solvable group of order 400 |
| The 46 conjugacy class representatives for $C_{10}^2:C_2^2$ |
| Character table for $C_{10}^2:C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 4.2.20592.2, 10.10.249828821987576832.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | R | R | R | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | $20$ | $20$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 11.10.9.6 | $x^{10} + 216513$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |