Normalized defining polynomial
\( x^{20} - 6 x^{19} + 3 x^{18} + 45 x^{17} - 93 x^{16} + 148 x^{15} - 539 x^{14} - 489 x^{13} + 3422 x^{12} - 894 x^{11} + 2973 x^{10} - 11008 x^{9} + 12614 x^{8} - 54399 x^{7} + 47350 x^{6} + 33765 x^{5} - 16959 x^{4} - 2255 x^{3} - 5890 x^{2} + 1605 x + 605 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-815119333245299093090410107421875=-\,3^{8}\cdot 5^{11}\cdot 239^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{45} a^{16} + \frac{1}{15} a^{15} + \frac{7}{45} a^{14} - \frac{1}{15} a^{13} - \frac{2}{15} a^{12} + \frac{7}{45} a^{11} + \frac{4}{45} a^{9} - \frac{22}{45} a^{8} - \frac{4}{15} a^{7} + \frac{8}{45} a^{6} + \frac{13}{45} a^{5} + \frac{14}{45} a^{4} - \frac{1}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{45} a^{17} - \frac{2}{45} a^{15} + \frac{2}{15} a^{14} + \frac{1}{15} a^{13} - \frac{1}{9} a^{12} - \frac{2}{15} a^{11} + \frac{4}{45} a^{10} - \frac{4}{45} a^{9} - \frac{7}{15} a^{8} - \frac{16}{45} a^{7} + \frac{19}{45} a^{6} + \frac{4}{9} a^{5} - \frac{2}{45} a^{4} - \frac{4}{9} a^{3} + \frac{1}{3} a^{2} - \frac{2}{9} a$, $\frac{1}{135} a^{18} - \frac{1}{135} a^{16} - \frac{2}{45} a^{15} + \frac{2}{27} a^{14} + \frac{7}{135} a^{13} + \frac{1}{45} a^{12} - \frac{4}{135} a^{11} + \frac{11}{135} a^{10} - \frac{2}{135} a^{9} - \frac{53}{135} a^{8} - \frac{23}{135} a^{7} - \frac{47}{135} a^{6} + \frac{41}{135} a^{5} - \frac{2}{45} a^{4} - \frac{1}{27} a^{3} + \frac{1}{3} a^{2} - \frac{2}{9} a + \frac{10}{27}$, $\frac{1}{465738441781175914923822059182912059231075} a^{19} - \frac{327910991587015092420763600085998545026}{155246147260391971641274019727637353077025} a^{18} + \frac{326003718245326290117755772187694645459}{465738441781175914923822059182912059231075} a^{17} - \frac{114661403961265011215940579978319171807}{51748715753463990547091339909212451025675} a^{16} - \frac{67936696259343471054166606281528607213367}{465738441781175914923822059182912059231075} a^{15} + \frac{49237103459852472503996732424466424038942}{465738441781175914923822059182912059231075} a^{14} - \frac{17210051219851382798461983138631419480646}{155246147260391971641274019727637353077025} a^{13} + \frac{64823564166109307722929821780479391438732}{465738441781175914923822059182912059231075} a^{12} + \frac{42086650494757186422226892171160543618008}{465738441781175914923822059182912059231075} a^{11} - \frac{3744640633205766295097646596996797428232}{93147688356235182984764411836582411846215} a^{10} - \frac{190689371338653070174734308466962864168807}{465738441781175914923822059182912059231075} a^{9} + \frac{185435259434077503319798798234373135061076}{465738441781175914923822059182912059231075} a^{8} - \frac{45954938297839522043862449451464855292578}{465738441781175914923822059182912059231075} a^{7} - \frac{51369661964501139109107262994405933364403}{465738441781175914923822059182912059231075} a^{6} - \frac{66872567306294839180317361163887681365913}{155246147260391971641274019727637353077025} a^{5} + \frac{206720356116400203410748353608930249048078}{465738441781175914923822059182912059231075} a^{4} + \frac{1183757275176051325477168217625878632949}{6209845890415678865650960789105494123081} a^{3} + \frac{2594669145304868875234764782255018811328}{31049229452078394328254803945527470615405} a^{2} + \frac{23589803441067076046599050663112114642864}{93147688356235182984764411836582411846215} a - \frac{5849595204887861491446244301381797017029}{31049229452078394328254803945527470615405}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1310163116.31 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 239 | Data not computed | ||||||