Normalized defining polynomial
\( x^{20} - 10 x^{19} + 50 x^{18} - 165 x^{17} + 356 x^{16} - 400 x^{15} - 195 x^{14} + 1735 x^{13} - 3456 x^{12} + 3407 x^{11} - 282 x^{10} - 4525 x^{9} + 7220 x^{8} - 5379 x^{7} + 649 x^{6} + 3055 x^{5} - 3530 x^{4} + 2000 x^{3} - 559 x^{2} + 28 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8095471366604708725498046875=-\,5^{10}\cdot 211^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{1617529607} a^{18} - \frac{9}{1617529607} a^{17} + \frac{592986742}{1617529607} a^{16} + \frac{108695089}{1617529607} a^{15} - \frac{126593082}{1617529607} a^{14} - \frac{207248394}{1617529607} a^{13} - \frac{246578114}{1617529607} a^{12} + \frac{222914169}{1617529607} a^{11} - \frac{587047678}{1617529607} a^{10} - \frac{285927676}{1617529607} a^{9} + \frac{170552399}{1617529607} a^{8} - \frac{433089773}{1617529607} a^{7} - \frac{321670276}{1617529607} a^{6} + \frac{147409500}{1617529607} a^{5} - \frac{180115383}{1617529607} a^{4} + \frac{353186294}{1617529607} a^{3} + \frac{263878447}{1617529607} a^{2} + \frac{528647744}{1617529607} a - \frac{618706340}{1617529607}$, $\frac{1}{389824635287} a^{19} + \frac{111}{389824635287} a^{18} - \frac{36610195299}{389824635287} a^{17} + \frac{187729235833}{389824635287} a^{16} - \frac{79282370001}{389824635287} a^{15} + \frac{8864525871}{389824635287} a^{14} + \frac{94580805524}{389824635287} a^{13} - \frac{30983989118}{389824635287} a^{12} + \frac{102186544131}{389824635287} a^{11} - \frac{77201767464}{389824635287} a^{10} - \frac{26053120686}{389824635287} a^{9} - \frac{170835295519}{389824635287} a^{8} - \frac{154196808277}{389824635287} a^{7} + \frac{99036992975}{389824635287} a^{6} - \frac{34251922807}{389824635287} a^{5} + \frac{61233350291}{389824635287} a^{4} - \frac{77050957191}{389824635287} a^{3} - \frac{9861708398}{389824635287} a^{2} - \frac{34232753480}{389824635287} a - \frac{181001714862}{389824635287}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3143353.78813 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 51200 |
| The 152 conjugacy class representatives for t20n647 are not computed |
| Character table for t20n647 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.6194123253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 211 | Data not computed | ||||||