Normalized defining polynomial
\( x^{20} - 7 x^{19} + 6 x^{18} + 76 x^{17} - 310 x^{16} + 628 x^{15} - 1590 x^{14} - 4464 x^{13} + 48529 x^{12} - 44206 x^{11} - 148199 x^{10} + 118185 x^{9} - 541338 x^{8} + 1589249 x^{7} + 1429417 x^{6} - 4418610 x^{5} + 2876572 x^{4} - 4250894 x^{3} + 2270690 x^{2} - 308835 x + 154547 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-785748055861331850537130300409483=-\,13^{10}\cdot 97^{2}\cdot 347^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 97, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{6004582852680123731026137090673169864063407921474505532050653490313361} a^{19} - \frac{2501343738423677249254592347309577169775997927072561905330242791305969}{6004582852680123731026137090673169864063407921474505532050653490313361} a^{18} - \frac{237536860740661452347506068190577361169132823928188153121353803281158}{545871168425465793729648826424833624005764356497682321095513953664851} a^{17} - \frac{2822053371425376978473295395141350046310286405044294502931374505150683}{6004582852680123731026137090673169864063407921474505532050653490313361} a^{16} + \frac{2944473347092019246005037871559186829224518334466632905147134691797903}{6004582852680123731026137090673169864063407921474505532050653490313361} a^{15} - \frac{379325002342789453796995429366942550154762123483130950605929502280366}{6004582852680123731026137090673169864063407921474505532050653490313361} a^{14} + \frac{2828646644343656668035803288098206024382786467629781581734887232408576}{6004582852680123731026137090673169864063407921474505532050653490313361} a^{13} + \frac{2342591366309421367622327075776371714903304334649446638414485542026375}{6004582852680123731026137090673169864063407921474505532050653490313361} a^{12} - \frac{2137260955479087853807420430613658674404028356455881774285101600773005}{6004582852680123731026137090673169864063407921474505532050653490313361} a^{11} + \frac{1377812356505086244340183134924615190557579114294056376079549502524358}{6004582852680123731026137090673169864063407921474505532050653490313361} a^{10} + \frac{2898555052532168940860230458898372250309060946465834151210943683217507}{6004582852680123731026137090673169864063407921474505532050653490313361} a^{9} - \frac{36814011471328361103074277228161491616029097442869196293596204568513}{545871168425465793729648826424833624005764356497682321095513953664851} a^{8} + \frac{1750475472876997890663968018906708462094634148581550627271413146896629}{6004582852680123731026137090673169864063407921474505532050653490313361} a^{7} - \frac{1716251406859323461030155555723727570719706272152448775019513002327661}{6004582852680123731026137090673169864063407921474505532050653490313361} a^{6} + \frac{2074151371593936222490543701546506170670140001367486498766889769665737}{6004582852680123731026137090673169864063407921474505532050653490313361} a^{5} - \frac{2013786752088856573880138221497005552303442481621172363091518644510255}{6004582852680123731026137090673169864063407921474505532050653490313361} a^{4} + \frac{264644790201350057337079564063040531029558502876168130829411192666392}{545871168425465793729648826424833624005764356497682321095513953664851} a^{3} + \frac{2194498158119760875066510875013589619403354157379681650048495988777472}{6004582852680123731026137090673169864063407921474505532050653490313361} a^{2} - \frac{170604341176559923767974126449388467646357737704901608497017092090938}{6004582852680123731026137090673169864063407921474505532050653490313361} a + \frac{1888445935900620305220188737146541381335284301134737378932548195912596}{6004582852680123731026137090673169864063407921474505532050653490313361}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1116604586.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n796 are not computed |
| Character table for t20n796 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.3.4511.1, 10.6.44707018837.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 347 | Data not computed | ||||||