Normalized defining polynomial
\( x^{20} - 2 x^{19} - 13 x^{18} + 20 x^{17} + 75 x^{16} - 94 x^{15} - 239 x^{14} + 342 x^{13} + 336 x^{12} - 630 x^{11} - 339 x^{10} + 652 x^{9} + 504 x^{8} - 878 x^{7} - 205 x^{6} + 654 x^{5} - 200 x^{4} - 28 x^{3} + 24 x^{2} - 10 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-76633477601046538240000000000=-\,2^{20}\cdot 5^{10}\cdot 71^{4}\cdot 131^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 71, 131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{11} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{25} a^{16} - \frac{1}{25} a^{15} - \frac{1}{25} a^{14} + \frac{2}{25} a^{12} + \frac{1}{5} a^{11} + \frac{8}{25} a^{10} + \frac{3}{25} a^{9} + \frac{6}{25} a^{8} + \frac{12}{25} a^{7} + \frac{1}{5} a^{6} + \frac{4}{25} a^{5} + \frac{1}{5} a^{4} + \frac{7}{25} a^{3} - \frac{12}{25} a^{2} - \frac{11}{25} a + \frac{11}{25}$, $\frac{1}{75} a^{17} + \frac{1}{75} a^{16} + \frac{2}{75} a^{15} - \frac{2}{75} a^{14} + \frac{2}{75} a^{13} - \frac{2}{25} a^{12} - \frac{4}{25} a^{11} - \frac{11}{75} a^{10} + \frac{9}{25} a^{9} - \frac{2}{25} a^{8} + \frac{29}{75} a^{7} + \frac{34}{75} a^{6} + \frac{1}{25} a^{5} + \frac{2}{75} a^{4} + \frac{22}{75} a^{3} - \frac{31}{75} a - \frac{23}{75}$, $\frac{1}{225} a^{18} - \frac{1}{225} a^{17} - \frac{1}{75} a^{16} - \frac{1}{75} a^{15} - \frac{2}{75} a^{14} + \frac{4}{45} a^{13} - \frac{2}{75} a^{12} + \frac{43}{225} a^{11} + \frac{14}{45} a^{10} + \frac{22}{75} a^{9} + \frac{38}{225} a^{8} - \frac{4}{15} a^{7} + \frac{1}{9} a^{6} - \frac{46}{225} a^{5} - \frac{4}{75} a^{4} + \frac{4}{9} a^{3} + \frac{4}{45} a^{2} - \frac{11}{75} a - \frac{32}{225}$, $\frac{1}{3729336539294475} a^{19} + \frac{2569684635074}{1243112179764825} a^{18} - \frac{23653100302156}{3729336539294475} a^{17} + \frac{4426539615001}{1243112179764825} a^{16} + \frac{4344850760971}{82874145317655} a^{15} - \frac{321314761787413}{3729336539294475} a^{14} - \frac{173729397966571}{3729336539294475} a^{13} + \frac{39377229904451}{745867307858895} a^{12} - \frac{289324099630321}{3729336539294475} a^{11} - \frac{1626405100534874}{3729336539294475} a^{10} + \frac{670801287877061}{3729336539294475} a^{9} + \frac{1861863261479099}{3729336539294475} a^{8} - \frac{54739921867853}{149173461571779} a^{7} - \frac{185127054017072}{1243112179764825} a^{6} - \frac{238422249668891}{745867307858895} a^{5} + \frac{1581540919587529}{3729336539294475} a^{4} - \frac{981316599838}{5524943021177} a^{3} - \frac{1400949223070788}{3729336539294475} a^{2} - \frac{110781761488301}{3729336539294475} a + \frac{148342719473434}{3729336539294475}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10696061.9951 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5000 |
| The 230 conjugacy class representatives for t20n299 are not computed |
| Character table for t20n299 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.400.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $71$ | 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.5.0.1 | $x^{5} - x + 8$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 71.5.4.5 | $x^{5} - 1136$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $131$ | $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 131.5.4.1 | $x^{5} - 131$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 131.2.0.1 | $x^{2} - x + 14$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |