Normalized defining polynomial
\( x^{20} - 3 x^{19} - 4 x^{18} + 23 x^{17} + 3 x^{16} - 108 x^{15} + 62 x^{14} + 353 x^{13} - 538 x^{12} - 333 x^{11} + 1385 x^{10} - 819 x^{9} - 865 x^{8} + 1401 x^{7} - 518 x^{6} - 210 x^{5} + 322 x^{4} - 267 x^{3} + 152 x^{2} - 37 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-74824300206301289262147419=-\,11^{17}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{23} a^{16} - \frac{2}{23} a^{15} + \frac{1}{23} a^{14} - \frac{8}{23} a^{13} - \frac{10}{23} a^{12} - \frac{4}{23} a^{11} - \frac{8}{23} a^{10} + \frac{7}{23} a^{9} + \frac{11}{23} a^{8} - \frac{6}{23} a^{7} - \frac{11}{23} a^{6} - \frac{3}{23} a^{5} - \frac{8}{23} a^{4} - \frac{5}{23} a^{3} + \frac{3}{23} a^{2} - \frac{11}{23}$, $\frac{1}{23} a^{17} - \frac{3}{23} a^{15} - \frac{6}{23} a^{14} - \frac{3}{23} a^{13} - \frac{1}{23} a^{12} + \frac{7}{23} a^{11} - \frac{9}{23} a^{10} + \frac{2}{23} a^{9} - \frac{7}{23} a^{8} - \frac{2}{23} a^{6} + \frac{9}{23} a^{5} + \frac{2}{23} a^{4} - \frac{7}{23} a^{3} + \frac{6}{23} a^{2} - \frac{11}{23} a + \frac{1}{23}$, $\frac{1}{23} a^{18} + \frac{11}{23} a^{15} - \frac{2}{23} a^{13} + \frac{2}{23} a^{11} + \frac{1}{23} a^{10} - \frac{9}{23} a^{9} + \frac{10}{23} a^{8} + \frac{3}{23} a^{7} - \frac{1}{23} a^{6} - \frac{7}{23} a^{5} - \frac{8}{23} a^{4} - \frac{9}{23} a^{3} - \frac{2}{23} a^{2} + \frac{1}{23} a - \frac{10}{23}$, $\frac{1}{75998920962361} a^{19} + \frac{38686911819}{75998920962361} a^{18} - \frac{568716581779}{75998920962361} a^{17} + \frac{1457124330318}{75998920962361} a^{16} - \frac{19066484440724}{75998920962361} a^{15} + \frac{662517620575}{3304300911407} a^{14} - \frac{13010319558437}{75998920962361} a^{13} + \frac{26809512942862}{75998920962361} a^{12} - \frac{14963263152982}{75998920962361} a^{11} - \frac{521990037476}{3304300911407} a^{10} + \frac{16327088135880}{75998920962361} a^{9} + \frac{33981354350415}{75998920962361} a^{8} + \frac{1273661320487}{3304300911407} a^{7} + \frac{130723722901}{3304300911407} a^{6} + \frac{8539525035006}{75998920962361} a^{5} - \frac{1510246636969}{75998920962361} a^{4} + \frac{37850926631171}{75998920962361} a^{3} - \frac{7077231569056}{75998920962361} a^{2} + \frac{12829318967956}{75998920962361} a - \frac{19398842641614}{75998920962361}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 298913.61697 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n310 |
| Character table for t20n310 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.6.113395848049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |