Normalized defining polynomial
\( x^{20} - 3 x^{19} - 24 x^{18} + 78 x^{17} + 290 x^{16} - 820 x^{15} - 2974 x^{14} + 6009 x^{13} + 21932 x^{12} - 32823 x^{11} - 104821 x^{10} + 121669 x^{9} + 335205 x^{8} - 328575 x^{7} - 654684 x^{6} + 612777 x^{5} + 629360 x^{4} - 580653 x^{3} - 222619 x^{2} + 192249 x + 4057 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7374058194161259315223236083984375=-\,5^{16}\cdot 11^{4}\cdot 71^{4}\cdot 167^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 71, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{10} a^{18} - \frac{1}{5} a^{17} - \frac{1}{2} a^{16} + \frac{1}{10} a^{15} - \frac{2}{5} a^{14} - \frac{3}{10} a^{13} - \frac{1}{10} a^{12} - \frac{1}{2} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{3}{10} a^{8} - \frac{1}{5} a^{6} + \frac{3}{10} a^{5} - \frac{3}{10} a^{4} - \frac{3}{10} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{3}{10}$, $\frac{1}{528807693267978449481443776649091177649412770} a^{19} + \frac{12087556148751065121773815268017376024758487}{264403846633989224740721888324545588824706385} a^{18} + \frac{90253078225186036335942696628610676335400543}{528807693267978449481443776649091177649412770} a^{17} + \frac{155961806425019431366591545028229076984396631}{528807693267978449481443776649091177649412770} a^{16} - \frac{6431186254930293725443883806307046532323281}{13915991928104696038985362543397136253931915} a^{15} + \frac{203294837657425131017573202573031943251272983}{528807693267978449481443776649091177649412770} a^{14} - \frac{42292169668438533325007399687358918605642199}{528807693267978449481443776649091177649412770} a^{13} + \frac{250188201307026697267889208064224553067135189}{528807693267978449481443776649091177649412770} a^{12} + \frac{54739051830284716494966344003941652337403003}{264403846633989224740721888324545588824706385} a^{11} - \frac{8732529740116586186854499372259135733261818}{264403846633989224740721888324545588824706385} a^{10} - \frac{157838336809159296218783987691214722916927329}{528807693267978449481443776649091177649412770} a^{9} + \frac{100496439101239887330396151272393668153040209}{264403846633989224740721888324545588824706385} a^{8} - \frac{35291620311353379961243021375583956390594471}{264403846633989224740721888324545588824706385} a^{7} - \frac{202426011993336111252685614962152460390313129}{528807693267978449481443776649091177649412770} a^{6} - \frac{37519494630450040376579847267227159473769219}{105761538653595689896288755329818235529882554} a^{5} + \frac{7291506039279813256201281395495925973263841}{27831983856209392077970725086794272507863830} a^{4} - \frac{48194583122298481297527946245686041709404287}{264403846633989224740721888324545588824706385} a^{3} - \frac{69223696193384323893106850790116045252869}{264403846633989224740721888324545588824706385} a^{2} - \frac{11919018048723462893732292225484388451274149}{528807693267978449481443776649091177649412770} a - \frac{123322790485791518704557723705184148353901616}{264403846633989224740721888324545588824706385}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10196193376.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1857945600 |
| The 260 conjugacy class representatives for t20n1106 are not computed |
| Character table for t20n1106 is not computed |
Intermediate fields
| 10.10.6645000909765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | R | $18{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $18{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.5.8.7 | $x^{5} + 10 x^{4} + 5$ | $5$ | $1$ | $8$ | $F_5$ | $[2]^{4}$ | |
| 5.5.8.7 | $x^{5} + 10 x^{4} + 5$ | $5$ | $1$ | $8$ | $F_5$ | $[2]^{4}$ | |
| $11$ | 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $71$ | 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.8.4.1 | $x^{8} + 110902 x^{4} - 357911 x^{2} + 3074813401$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $167$ | 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 167.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 167.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 167.8.4.1 | $x^{8} + 3346680 x^{4} - 4657463 x^{2} + 2800066755600$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |