Properties

Label 20.10.6586186841...0144.2
Degree $20$
Signature $[10, 5]$
Discriminant $-\,2^{10}\cdot 11^{16}\cdot 241^{3}$
Root discriminant $21.92$
Ramified primes $2, 11, 241$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T846

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -9, -7, 83, 94, -211, -550, 143, 1109, 273, -667, -149, 146, -151, -155, 41, 59, 4, -7, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 3*x^19 - 7*x^18 + 4*x^17 + 59*x^16 + 41*x^15 - 155*x^14 - 151*x^13 + 146*x^12 - 149*x^11 - 667*x^10 + 273*x^9 + 1109*x^8 + 143*x^7 - 550*x^6 - 211*x^5 + 94*x^4 + 83*x^3 - 7*x^2 - 9*x - 1)
 
gp: K = bnfinit(x^20 - 3*x^19 - 7*x^18 + 4*x^17 + 59*x^16 + 41*x^15 - 155*x^14 - 151*x^13 + 146*x^12 - 149*x^11 - 667*x^10 + 273*x^9 + 1109*x^8 + 143*x^7 - 550*x^6 - 211*x^5 + 94*x^4 + 83*x^3 - 7*x^2 - 9*x - 1, 1)
 

Normalized defining polynomial

\( x^{20} - 3 x^{19} - 7 x^{18} + 4 x^{17} + 59 x^{16} + 41 x^{15} - 155 x^{14} - 151 x^{13} + 146 x^{12} - 149 x^{11} - 667 x^{10} + 273 x^{9} + 1109 x^{8} + 143 x^{7} - 550 x^{6} - 211 x^{5} + 94 x^{4} + 83 x^{3} - 7 x^{2} - 9 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[10, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-658618684118710741619590144=-\,2^{10}\cdot 11^{16}\cdot 241^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.92$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 241$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{24435435393672419408489} a^{19} - \frac{6268779685394130564415}{24435435393672419408489} a^{18} + \frac{2187316299024888623704}{24435435393672419408489} a^{17} - \frac{10349170143652554073968}{24435435393672419408489} a^{16} - \frac{8557253547929463666422}{24435435393672419408489} a^{15} - \frac{6566516086397153708651}{24435435393672419408489} a^{14} + \frac{3823412639962981301616}{24435435393672419408489} a^{13} + \frac{1971326746847087161988}{24435435393672419408489} a^{12} + \frac{12073519333304139554444}{24435435393672419408489} a^{11} - \frac{6469336053947732450847}{24435435393672419408489} a^{10} - \frac{5834410779745393210986}{24435435393672419408489} a^{9} - \frac{1533679210458104850686}{24435435393672419408489} a^{8} - \frac{5418833435305993883315}{24435435393672419408489} a^{7} + \frac{3316096582139473397628}{24435435393672419408489} a^{6} + \frac{10388997434211503010761}{24435435393672419408489} a^{5} + \frac{1834947053542327388317}{24435435393672419408489} a^{4} - \frac{5206542487882177936915}{24435435393672419408489} a^{3} - \frac{6855039713621028243064}{24435435393672419408489} a^{2} - \frac{42599411129246978207}{24435435393672419408489} a + \frac{10101546835311615880695}{24435435393672419408489}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 866308.68228 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T846:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 163840
The 649 conjugacy class representatives for t20n846 are not computed
Character table for t20n846 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.6.51660490321.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R $20$ $20$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.13$x^{10} - 15 x^{8} + 26 x^{6} - 22 x^{4} + 37 x^{2} - 59$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2, 2]^{5}$
2.10.0.1$x^{10} - x^{3} + 1$$1$$10$$0$$C_{10}$$[\ ]^{10}$
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
241Data not computed