Normalized defining polynomial
\( x^{20} - 33 x^{18} + 180 x^{16} + 2997 x^{14} - 26325 x^{12} - 7533 x^{10} + 236925 x^{8} + 242757 x^{6} - 131220 x^{4} - 216513 x^{2} - 59049 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6500641709341565444982486072370176=-\,2^{10}\cdot 3^{10}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{27} a^{6}$, $\frac{1}{27} a^{7}$, $\frac{1}{243} a^{8} + \frac{1}{3}$, $\frac{1}{243} a^{9} + \frac{1}{3} a$, $\frac{1}{729} a^{10} + \frac{1}{9} a^{2}$, $\frac{1}{729} a^{11} + \frac{1}{9} a^{3}$, $\frac{1}{2187} a^{12} + \frac{1}{27} a^{4}$, $\frac{1}{2187} a^{13} + \frac{1}{27} a^{5}$, $\frac{1}{6561} a^{14} + \frac{1}{81} a^{6}$, $\frac{1}{13122} a^{15} - \frac{1}{13122} a^{14} - \frac{1}{4374} a^{13} - \frac{1}{4374} a^{12} - \frac{1}{1458} a^{11} - \frac{1}{81} a^{7} - \frac{1}{162} a^{6} + \frac{1}{27} a^{5} - \frac{1}{54} a^{4} - \frac{1}{18} a^{3} - \frac{1}{2}$, $\frac{1}{1535274} a^{16} - \frac{4}{85293} a^{14} - \frac{1}{9477} a^{12} - \frac{1}{1458} a^{11} - \frac{5}{9477} a^{10} + \frac{4}{9477} a^{8} - \frac{1}{54} a^{7} - \frac{29}{2106} a^{6} - \frac{1}{18} a^{5} - \frac{1}{117} a^{4} - \frac{1}{18} a^{3} + \frac{4}{117} a^{2} - \frac{1}{2} a + \frac{79}{234}$, $\frac{1}{1535274} a^{17} + \frac{5}{170586} a^{15} - \frac{1}{13122} a^{14} + \frac{7}{56862} a^{13} + \frac{1}{6318} a^{11} + \frac{4}{9477} a^{9} - \frac{1}{486} a^{8} + \frac{23}{2106} a^{7} + \frac{1}{81} a^{6} - \frac{16}{351} a^{5} + \frac{7}{78} a^{3} - \frac{1}{6} a^{2} + \frac{79}{234} a - \frac{1}{6}$, $\frac{1}{170415414} a^{18} - \frac{5}{56805138} a^{16} - \frac{14}{3155841} a^{14} - \frac{1}{4374} a^{13} - \frac{10}{1051947} a^{12} - \frac{1}{1458} a^{11} - \frac{398}{1051947} a^{10} - \frac{1}{486} a^{9} + \frac{23}{53946} a^{8} + \frac{509}{77922} a^{6} + \frac{1}{27} a^{5} - \frac{508}{12987} a^{4} + \frac{1}{9} a^{3} - \frac{1103}{25974} a^{2} - \frac{1}{6} a + \frac{3139}{8658}$, $\frac{1}{170415414} a^{19} - \frac{5}{56805138} a^{17} - \frac{14}{3155841} a^{15} - \frac{1}{13122} a^{14} - \frac{10}{1051947} a^{13} - \frac{1}{4374} a^{12} - \frac{398}{1051947} a^{11} - \frac{1}{1458} a^{10} + \frac{23}{53946} a^{9} + \frac{509}{77922} a^{7} + \frac{1}{81} a^{6} - \frac{508}{12987} a^{5} + \frac{1}{27} a^{4} - \frac{1103}{25974} a^{3} - \frac{1}{18} a^{2} + \frac{3139}{8658} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3848976829.54 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40 |
| The 13 conjugacy class representatives for $C_5:D_4$ |
| Character table for $C_5:D_4$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), 4.2.5788836.1, 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||