Normalized defining polynomial
\( x^{20} - 4 x^{19} - 97 x^{18} - 370 x^{17} - 6187 x^{16} + 33002 x^{15} + 497168 x^{14} + 3038916 x^{13} + 20947096 x^{12} + 79881242 x^{11} + 56317635 x^{10} + 211378009 x^{9} + 6767525693 x^{8} - 111639824098 x^{7} + 68408260032 x^{6} - 1964963804865 x^{5} - 3739321671269 x^{4} + 39767820622220 x^{3} + 6968832674831 x^{2} - 69114537885447 x - 25230707491711 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-634489950985999984940133256223865794519711=-\,61^{7}\cdot 167^{5}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 167, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{19} - \frac{1257946939379648315557135748936032739953966125915407805880499023802886030712997396961222378401877095356493383936694958732827746234832147552917}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{18} - \frac{2975268534365450329587420822547622685913818530924445403644760687388710028002938881487720051878146421915836041972547085284798510666598933151146}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{17} + \frac{23385411184174677462782896927127854548188747764858973295507688280685360138629546382407305995465175981812857819099851463354845543697513459852497}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{16} - \frac{24030977440885292528783939221940386904541308743410414465852268411393553957139967570742759766612918030485493522578310024292715047709247599471601}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{15} - \frac{19745330123633678588101787609773151672570092438404979072656593118408891072427066164442344813322258656007743851062764205281886666021101262941300}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{14} - \frac{14061024841040434749420926210059939618568909929863481451057043692483136930204555730036791648519865902481561923469220479301186456339054248387540}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{13} + \frac{1020833969991652924819084143178578109433962359150592172268673146803022029458124094155153983087016624456817241234917042214268415378517943518282}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{12} - \frac{14681720299075443609854723794351907145547839756666456528210823562743472741748356005215225840344480182045254767206631329746277917363811669768935}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{11} - \frac{21125206514600380248566386973630151353935778067206327820024214323780992528210722935190157873053978824869471697575542769830714778160104521525704}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{10} - \frac{18898590285072177159714325584742141901015436438907383103638223267084184259002080860133282516329948155341155201962970644060532847376166538925739}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{9} + \frac{8183197554528616972278753085435638868397720131028313567202863041728378733721817132029161033612251636189733162868541573295711651441640288442803}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{8} + \frac{3546131394215585391080107883466127890626175649497495450378410549754852414924124814307497400144547661035801393134321498053555143549016750798715}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{7} + \frac{1066167120475121914654664995947033827638094188525966592381828006921957075543752965957546930324881909220338958995562686070838486745786323770010}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{6} + \frac{14617346438822457169336992917462595311270741035436704749608452892569501509497583829909660083076721615342968397393188980649339595185015129557861}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{5} - \frac{21715124848621966276750380611002736179485464999838893287721678987637825488312670883077203374086084070367534617178187416524611157470569862839930}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{4} + \frac{1900895506261388660378979314956366928961497325258141079466087122769520733269282951569325800256500776707521418803420054311628238478496141292446}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{3} + \frac{8698705824755455732904481478875988729123343673318887539447462427640482464681834630042145088340775402570424915979512289133092164349751786470412}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a^{2} - \frac{5670266543033116219940569831573089335089964235957916649149357503706260471089133015748563182844799166162981260539060221520759397114472701677026}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553} a + \frac{23861942981108854697407839426192591415359358006257621190846716922722770664014548290547021336092062037070105873328072703780913002447102299468277}{55276891025052364280846254341022180894084398292984281084776266199657286497361997643320400823629294403299306403688809575481736405690444100133553}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13419474499800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n993 are not computed |
| Character table for t20n993 is not computed |
Intermediate fields
| 5.5.24217.1, 10.8.97939335863.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 167 | Data not computed | ||||||
| 397 | Data not computed | ||||||