Normalized defining polynomial
\( x^{20} - 3 x^{19} + 4 x^{18} - 57 x^{17} + 106 x^{16} + 57 x^{15} + 539 x^{14} - 1294 x^{13} - 3995 x^{12} + 12227 x^{11} - 5039 x^{10} - 16190 x^{9} + 22921 x^{8} - 9603 x^{7} + 2305 x^{6} - 4483 x^{5} + 1441 x^{4} + 1356 x^{3} - 19 x^{2} - 274 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6327476972540310189711090258108619=-\,19^{11}\cdot 293^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{7} a^{17} + \frac{3}{7} a^{16} + \frac{3}{7} a^{15} + \frac{3}{7} a^{14} + \frac{3}{7} a^{12} - \frac{2}{7} a^{9} - \frac{3}{7} a^{7} + \frac{2}{7} a^{6} + \frac{2}{7} a^{5} + \frac{1}{7} a^{3} - \frac{2}{7} a^{2} + \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{49} a^{18} + \frac{1}{49} a^{17} + \frac{4}{49} a^{16} + \frac{4}{49} a^{15} + \frac{8}{49} a^{14} + \frac{24}{49} a^{13} + \frac{15}{49} a^{12} - \frac{1}{7} a^{11} - \frac{16}{49} a^{10} - \frac{10}{49} a^{9} - \frac{17}{49} a^{8} + \frac{1}{49} a^{7} + \frac{12}{49} a^{6} - \frac{4}{49} a^{5} - \frac{13}{49} a^{4} - \frac{11}{49} a^{3} - \frac{3}{7} a^{2} - \frac{1}{7} a - \frac{12}{49}$, $\frac{1}{536258235770020911940408753244302181} a^{19} - \frac{1754158276914807204010500958000226}{536258235770020911940408753244302181} a^{18} - \frac{12275122973909759503412032210803282}{536258235770020911940408753244302181} a^{17} + \frac{67362051828262233391954632487896558}{536258235770020911940408753244302181} a^{16} - \frac{6085482274660029657107603031654641}{76608319395717273134344107606328883} a^{15} + \frac{41947979812906797951384756728851173}{536258235770020911940408753244302181} a^{14} - \frac{222554575408860808292431582703064711}{536258235770020911940408753244302181} a^{13} + \frac{85095268148350651103920898450727207}{536258235770020911940408753244302181} a^{12} + \frac{157213535619177033632901576079366589}{536258235770020911940408753244302181} a^{11} - \frac{105736860254974248648487540056895308}{536258235770020911940408753244302181} a^{10} - \frac{248847814234571664798379307038163386}{536258235770020911940408753244302181} a^{9} - \frac{34353282139989914797870143472249009}{76608319395717273134344107606328883} a^{8} + \frac{265085802390885683823814929289088358}{536258235770020911940408753244302181} a^{7} - \frac{31956070019429719231998155563547374}{76608319395717273134344107606328883} a^{6} + \frac{67610821020180633005104424955781763}{536258235770020911940408753244302181} a^{5} - \frac{59905760715857801758106375461203653}{536258235770020911940408753244302181} a^{4} + \frac{115376577944931740212061942503211918}{536258235770020911940408753244302181} a^{3} + \frac{423260875403384608369021587764928}{76608319395717273134344107606328883} a^{2} - \frac{267383117631764899129883221856955374}{536258235770020911940408753244302181} a - \frac{138439606916597327076599740031898929}{536258235770020911940408753244302181}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2306327436.28 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 104 conjugacy class representatives for t20n693 are not computed |
| Character table for t20n693 is not computed |
Intermediate fields
| 10.10.960472390437121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 293 | Data not computed | ||||||