Normalized defining polynomial
\( x^{20} + x^{18} - 46 x^{16} + 22 x^{14} + 337 x^{12} - 208 x^{10} - 629 x^{8} + 274 x^{6} + 274 x^{4} + 7 x^{2} - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5975426962737027325975384293376=-\,2^{20}\cdot 11^{8}\cdot 113^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{44} a^{14} + \frac{1}{22} a^{12} + \frac{7}{44} a^{10} + \frac{2}{11} a^{8} - \frac{3}{22} a^{6} - \frac{1}{2} a^{5} + \frac{15}{44} a^{4} + \frac{5}{22} a^{2} - \frac{1}{2} a - \frac{17}{44}$, $\frac{1}{44} a^{15} + \frac{1}{22} a^{13} + \frac{7}{44} a^{11} + \frac{2}{11} a^{9} - \frac{3}{22} a^{7} - \frac{1}{2} a^{6} + \frac{15}{44} a^{5} + \frac{5}{22} a^{3} - \frac{1}{2} a^{2} - \frac{17}{44} a$, $\frac{1}{88} a^{16} - \frac{1}{88} a^{14} - \frac{21}{88} a^{12} + \frac{9}{88} a^{10} - \frac{1}{11} a^{8} + \frac{1}{8} a^{6} + \frac{9}{88} a^{4} - \frac{1}{2} a^{3} + \frac{41}{88} a^{2} - \frac{1}{2} a + \frac{7}{88}$, $\frac{1}{88} a^{17} - \frac{1}{88} a^{15} + \frac{1}{88} a^{13} - \frac{1}{4} a^{12} - \frac{13}{88} a^{11} - \frac{1}{4} a^{10} - \frac{1}{11} a^{9} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{35}{88} a^{5} - \frac{1}{2} a^{4} + \frac{19}{88} a^{3} - \frac{1}{4} a^{2} - \frac{15}{88} a - \frac{1}{4}$, $\frac{1}{26434672} a^{18} + \frac{14665}{3304334} a^{16} - \frac{94023}{13217336} a^{14} - \frac{1309899}{6608668} a^{12} - \frac{711131}{26434672} a^{10} + \frac{2251563}{26434672} a^{8} - \frac{1620185}{3304334} a^{6} - \frac{1101435}{13217336} a^{4} - \frac{1}{2} a^{3} - \frac{1343579}{3304334} a^{2} - \frac{1}{2} a - \frac{9203913}{26434672}$, $\frac{1}{26434672} a^{19} + \frac{14665}{3304334} a^{17} - \frac{94023}{13217336} a^{15} + \frac{85567}{1652167} a^{13} - \frac{1}{4} a^{12} + \frac{5897537}{26434672} a^{11} - \frac{1}{4} a^{10} + \frac{2251563}{26434672} a^{9} + \frac{15991}{1652167} a^{7} + \frac{5507233}{13217336} a^{5} - \frac{1}{2} a^{4} + \frac{2269343}{6608668} a^{3} + \frac{1}{4} a^{2} + \frac{10622091}{26434672} a - \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 245035829.209 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 188 conjugacy class representatives for t20n968 are not computed |
| Character table for t20n968 is not computed |
Intermediate fields
| 5.5.6180196.1, 10.10.152779290393664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 2.12.20.56 | $x^{12} + 2 x^{11} + 2 x^{9} + 2 x^{2} + 2$ | $12$ | $1$ | $20$ | 12T146 | $[4/3, 4/3, 2, 2, 7/3, 7/3]_{3}^{2}$ | |
| $11$ | 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.8.0.1 | $x^{8} + x^{2} - 2 x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $113$ | 113.8.0.1 | $x^{8} - 2 x + 5$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 113.12.8.1 | $x^{12} - 339 x^{9} + 38307 x^{6} - 1442897 x^{3} + 20380920125$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |