Normalized defining polynomial
\( x^{20} - 2 x^{19} + 26 x^{18} - 250 x^{17} - 2008 x^{16} + 4368 x^{15} - 55563 x^{14} + 310776 x^{13} + 1931801 x^{12} - 2159284 x^{11} - 6849787 x^{10} - 40521162 x^{9} - 170875749 x^{8} - 37548434 x^{7} + 350417694 x^{6} + 1258865740 x^{5} + 2300571482 x^{4} - 321339590 x^{3} - 1107249165 x^{2} - 5789595834 x - 9281006867 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-57952586042902321051693895129329600299008=-\,2^{20}\cdot 11^{18}\cdot 1583^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $109.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 1583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} - \frac{1}{11} a^{14} - \frac{4}{11} a^{13} + \frac{3}{11} a^{12} + \frac{3}{11} a^{11} - \frac{1}{11} a^{10}$, $\frac{1}{11} a^{16} - \frac{5}{11} a^{14} - \frac{1}{11} a^{13} - \frac{5}{11} a^{12} + \frac{2}{11} a^{11} - \frac{1}{11} a^{10}$, $\frac{1}{11} a^{17} + \frac{5}{11} a^{14} - \frac{3}{11} a^{13} - \frac{5}{11} a^{12} + \frac{3}{11} a^{11} - \frac{5}{11} a^{10}$, $\frac{1}{11} a^{18} + \frac{2}{11} a^{14} + \frac{4}{11} a^{13} - \frac{1}{11} a^{12} + \frac{2}{11} a^{11} + \frac{5}{11} a^{10}$, $\frac{1}{5473140273525346888315561017928109627643525838930092856016591504032733947857026908205986264632206448341} a^{19} - \frac{9531776812925534979179357347111040861680846911301042472999308673184169490688263007403120386215121125}{237962620588058560361546131214265635984501123431743167652895282784031910776392474269825489766617671667} a^{18} + \frac{23795553345297025435716864312481407212967768094946837838681401067147706734135557092281540693323491186}{5473140273525346888315561017928109627643525838930092856016591504032733947857026908205986264632206448341} a^{17} + \frac{12166296227891080811982395510961872499680881726405915716938141642942112918772901014630270885034800439}{497558206684122444392323728902555420694865985357281168728781045821157631623366082564180569512018768031} a^{16} + \frac{184484225233243662184005593626335101988244702195255249102888143657427780253975463009157751127373545173}{5473140273525346888315561017928109627643525838930092856016591504032733947857026908205986264632206448341} a^{15} + \frac{2212426073538246229094164736721131352807362561689114499285795505060340057792659530996483466169908868732}{5473140273525346888315561017928109627643525838930092856016591504032733947857026908205986264632206448341} a^{14} + \frac{2596273141328011662643915234022999396690644121529103416021677315583855945701740061028185816899798861442}{5473140273525346888315561017928109627643525838930092856016591504032733947857026908205986264632206448341} a^{13} + \frac{883919052169846600457516249281165626431580548284946740632752743235458993299864225639599140921674124360}{5473140273525346888315561017928109627643525838930092856016591504032733947857026908205986264632206448341} a^{12} + \frac{218062050249743772394410333743113845979019308734368447286258079163316392875535513528441321683114108127}{497558206684122444392323728902555420694865985357281168728781045821157631623366082564180569512018768031} a^{11} + \frac{847519833165037684542209820504593182122168246972197029890211661410189558335470424628189429025037923143}{5473140273525346888315561017928109627643525838930092856016591504032733947857026908205986264632206448341} a^{10} - \frac{104119905172908830850850532574963094365902039407603320961493083820468470457469493991537768524513732727}{497558206684122444392323728902555420694865985357281168728781045821157631623366082564180569512018768031} a^{9} + \frac{239646053103430109783707743019832004994590243757230222885579583337448675120266856151185987462854468283}{497558206684122444392323728902555420694865985357281168728781045821157631623366082564180569512018768031} a^{8} + \frac{26599162264274817774893104567686525253086044770891928070041708512496408502142773170175617843371233394}{497558206684122444392323728902555420694865985357281168728781045821157631623366082564180569512018768031} a^{7} - \frac{119026923575522944789834354584093055166855751192834125596278033021678665333256665417860601936797477033}{497558206684122444392323728902555420694865985357281168728781045821157631623366082564180569512018768031} a^{6} + \frac{29245320798290363354135314020789258749977169870180901272982271202964389562473500411783233919465292455}{497558206684122444392323728902555420694865985357281168728781045821157631623366082564180569512018768031} a^{5} - \frac{237132125597836567578169650606539598227388800524919482087540400094064359898890166618739395111439687175}{497558206684122444392323728902555420694865985357281168728781045821157631623366082564180569512018768031} a^{4} + \frac{156126089692013799736233456063019871085786051615196955388241305546385401494826459429146038495788881531}{497558206684122444392323728902555420694865985357281168728781045821157631623366082564180569512018768031} a^{3} + \frac{116111263738391412310026262234667255355980173210068548426732544354225479123187458798071934543973285343}{497558206684122444392323728902555420694865985357281168728781045821157631623366082564180569512018768031} a^{2} - \frac{236551774177644075885407373729022135237869731631597045815128441729831028911525368523744392072488098061}{497558206684122444392323728902555420694865985357281168728781045821157631623366082564180569512018768031} a - \frac{211420388579667291281821526105879541266548022808363201886858283401308115060985202644006837533352999773}{497558206684122444392323728902555420694865985357281168728781045821157631623366082564180569512018768031}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8983236423350 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n130 |
| Character table for t20n130 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | $20$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 1583 | Data not computed | ||||||