Normalized defining polynomial
\( x^{20} - 2 x^{19} + 26 x^{18} - 316 x^{17} - 4329 x^{16} + 8240 x^{15} - 55794 x^{14} + 112182 x^{13} + 2245180 x^{12} + 4679350 x^{11} + 20230134 x^{10} - 62057688 x^{9} - 335257703 x^{8} - 341587532 x^{7} - 317626815 x^{6} + 4990875340 x^{5} + 6434665655 x^{4} - 6571612740 x^{3} - 8525407341 x^{2} - 6538575428 x - 6758223659 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-57952586042902321051693895129329600299008=-\,2^{20}\cdot 11^{18}\cdot 1583^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $109.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 1583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} - \frac{1}{11} a^{14} - \frac{4}{11} a^{13} + \frac{3}{11} a^{12} + \frac{3}{11} a^{11} - \frac{1}{11} a^{10}$, $\frac{1}{11} a^{16} - \frac{5}{11} a^{14} - \frac{1}{11} a^{13} - \frac{5}{11} a^{12} + \frac{2}{11} a^{11} - \frac{1}{11} a^{10}$, $\frac{1}{11} a^{17} + \frac{5}{11} a^{14} - \frac{3}{11} a^{13} - \frac{5}{11} a^{12} + \frac{3}{11} a^{11} - \frac{5}{11} a^{10}$, $\frac{1}{10879} a^{18} - \frac{85}{10879} a^{17} + \frac{290}{10879} a^{16} - \frac{2}{10879} a^{15} - \frac{2476}{10879} a^{14} + \frac{3816}{10879} a^{13} - \frac{1120}{10879} a^{12} + \frac{2708}{10879} a^{11} + \frac{4355}{10879} a^{10} - \frac{239}{989} a^{9} - \frac{447}{989} a^{8} + \frac{256}{989} a^{7} - \frac{103}{989} a^{6} + \frac{13}{989} a^{5} - \frac{7}{43} a^{4} - \frac{423}{989} a^{3} - \frac{148}{989} a^{2} - \frac{80}{989} a - \frac{297}{989}$, $\frac{1}{95083794563321113031056096139077613366936035865759646505499891219486813050623060150663026047348696579793} a^{19} - \frac{1088823886764943422593374615526717496799322922701923161795422116319693393045011035064961259080816124}{95083794563321113031056096139077613366936035865759646505499891219486813050623060150663026047348696579793} a^{18} + \frac{2144443448456221978981944806070047765147908609613439477353855940839153058846476348712349112211653251014}{95083794563321113031056096139077613366936035865759646505499891219486813050623060150663026047348696579793} a^{17} + \frac{3638198577801545263380166448025383123940085639901635596335589544881618866403539299082887727763866089968}{95083794563321113031056096139077613366936035865759646505499891219486813050623060150663026047348696579793} a^{16} - \frac{2774718208313549464012322872521554062411131999827960735528427008307381378846525277928145353268467116257}{95083794563321113031056096139077613366936035865759646505499891219486813050623060150663026047348696579793} a^{15} + \frac{1691946465566793423067581503987169473103262125370311377278717355449396527525781272205077834279187585990}{4134078024492222305698091136481635363779827646337375935021734400847252741331437397854914175971682459991} a^{14} + \frac{8085134143764696832403419542539894447879974950782579481683961570339946426600331602789438540598156988894}{95083794563321113031056096139077613366936035865759646505499891219486813050623060150663026047348696579793} a^{13} + \frac{30872169661303478000497089995890555703514609103497580053834669457832630820344134176698165833100057117488}{95083794563321113031056096139077613366936035865759646505499891219486813050623060150663026047348696579793} a^{12} + \frac{2735885287068830742880023259782395337533623641870398817777705047864026392135324232564681115024233194501}{95083794563321113031056096139077613366936035865759646505499891219486813050623060150663026047348696579793} a^{11} - \frac{3421347576665695502599049012303006109580325004335419976798020781337882042259620515368588786585219595981}{8643981323938283002823281467188873942448730533250876955045444656316983004602096377333002367940790598163} a^{10} - \frac{3726060554641158106677115704287712031731865908204066919937764823672028584287415002782181085490205268029}{8643981323938283002823281467188873942448730533250876955045444656316983004602096377333002367940790598163} a^{9} + \frac{4716584211404822995254507959086202026946003449432769462652331191117839656628964027092889480939922337}{8643981323938283002823281467188873942448730533250876955045444656316983004602096377333002367940790598163} a^{8} - \frac{400901130186008578141511031435848866908575132250569098463430191283834415400696471904085794466945436245}{8643981323938283002823281467188873942448730533250876955045444656316983004602096377333002367940790598163} a^{7} + \frac{1179290516116526997055026034444546920040048578769086416446288775262084584363524981346818063510200804465}{8643981323938283002823281467188873942448730533250876955045444656316983004602096377333002367940790598163} a^{6} + \frac{770259671086295080790087583425730067001034649395497062437809168241386096391987448500244969127818157354}{8643981323938283002823281467188873942448730533250876955045444656316983004602096377333002367940790598163} a^{5} + \frac{3304556183666359012162280656237441318194703387982893404040898097869971361722959190121459746524099090048}{8643981323938283002823281467188873942448730533250876955045444656316983004602096377333002367940790598163} a^{4} + \frac{475870745457048308138347576895551443004609934890676994150284071486316687288906931395422437242248387069}{8643981323938283002823281467188873942448730533250876955045444656316983004602096377333002367940790598163} a^{3} - \frac{91434373049499057499395031727849173306896442978104534324196447969013413325494967518910114780680418}{8643981323938283002823281467188873942448730533250876955045444656316983004602096377333002367940790598163} a^{2} + \frac{1808792498704557560788750555522118205108926735369417475204122365576542004640431192239964788999810065486}{8643981323938283002823281467188873942448730533250876955045444656316983004602096377333002367940790598163} a + \frac{3047772128186053066174649450556322718300166920045158058440414290079842667749846755444918739010379184552}{8643981323938283002823281467188873942448730533250876955045444656316983004602096377333002367940790598163}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9182698085030 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n130 |
| Character table for t20n130 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | $20$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 1583 | Data not computed | ||||||