Normalized defining polynomial
\( x^{20} - 3 x^{19} - 29 x^{18} + 89 x^{17} + 286 x^{16} - 847 x^{15} - 1392 x^{14} + 3002 x^{13} + 6134 x^{12} - 5102 x^{11} - 21492 x^{10} + 6359 x^{9} + 47689 x^{8} - 16744 x^{7} - 48617 x^{6} + 13733 x^{5} + 30458 x^{4} - 8949 x^{3} - 8132 x^{2} + 722 x + 361 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5135597653613049544557754697024447=-\,19^{9}\cdot 293^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18} - \frac{3}{19} a^{17} + \frac{9}{19} a^{16} - \frac{6}{19} a^{15} + \frac{1}{19} a^{14} + \frac{8}{19} a^{13} - \frac{5}{19} a^{12} - \frac{3}{19} a^{10} + \frac{9}{19} a^{9} - \frac{3}{19} a^{8} - \frac{6}{19} a^{7} - \frac{1}{19} a^{6} - \frac{5}{19} a^{5} + \frac{4}{19} a^{4} - \frac{4}{19} a^{3} + \frac{1}{19} a^{2}$, $\frac{1}{11150818736546140535563991566329309544433} a^{19} + \frac{205105490783589043470307729901674275771}{11150818736546140535563991566329309544433} a^{18} - \frac{618457737314436793985351898135134584367}{11150818736546140535563991566329309544433} a^{17} - \frac{1754763413223415083660924769657824073277}{11150818736546140535563991566329309544433} a^{16} - \frac{1473801677155924444256494592608234232504}{11150818736546140535563991566329309544433} a^{15} + \frac{333185844050961851454265161517619245160}{11150818736546140535563991566329309544433} a^{14} + \frac{1912590688113515840767157258375769275055}{11150818736546140535563991566329309544433} a^{13} - \frac{3847272048339409217938006553516045120918}{11150818736546140535563991566329309544433} a^{12} - \frac{2742399197977469123467505173896832827602}{11150818736546140535563991566329309544433} a^{11} - \frac{3520404823618929628602924430254481701262}{11150818736546140535563991566329309544433} a^{10} + \frac{4305104611831930564316631727555103613059}{11150818736546140535563991566329309544433} a^{9} + \frac{3788068512207517907224316176001069481905}{11150818736546140535563991566329309544433} a^{8} + \frac{1738825563354034288049081184371381913418}{11150818736546140535563991566329309544433} a^{7} + \frac{3347531077710071794882516381979172538575}{11150818736546140535563991566329309544433} a^{6} - \frac{4916107543260924368047770940734604987611}{11150818736546140535563991566329309544433} a^{5} - \frac{2136532098230195896319092892381070114367}{11150818736546140535563991566329309544433} a^{4} + \frac{101887861372293555692835813044302110923}{586885196660323186082315345596279449707} a^{3} + \frac{3666267946689844313009077658366314786932}{11150818736546140535563991566329309544433} a^{2} + \frac{107134899727501175433779297789536855737}{586885196660323186082315345596279449707} a + \frac{165378066339674069378761638596461144817}{586885196660323186082315345596279449707}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3421279359.08 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 104 conjugacy class representatives for t20n693 are not computed |
| Character table for t20n693 is not computed |
Intermediate fields
| 10.10.960472390437121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 293 | Data not computed | ||||||