Normalized defining polynomial
\( x^{20} - x^{19} - 12 x^{18} + 48 x^{17} + 134 x^{16} - 429 x^{15} - 1115 x^{14} + 2481 x^{13} + 5447 x^{12} - 15597 x^{11} - 17502 x^{10} + 66439 x^{9} + 26280 x^{8} - 199216 x^{7} - 81786 x^{6} + 263990 x^{5} + 141534 x^{4} - 137694 x^{3} - 114167 x^{2} - 23617 x - 1301 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5135597653613049544557754697024447=-\,19^{9}\cdot 293^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{254} a^{18} + \frac{18}{127} a^{17} + \frac{13}{254} a^{16} - \frac{41}{254} a^{15} + \frac{41}{254} a^{14} + \frac{65}{254} a^{13} - \frac{50}{127} a^{12} - \frac{34}{127} a^{11} - \frac{50}{127} a^{10} - \frac{17}{254} a^{9} + \frac{47}{254} a^{8} + \frac{50}{127} a^{7} + \frac{47}{254} a^{6} + \frac{59}{127} a^{5} + \frac{89}{254} a^{4} + \frac{27}{254} a^{3} + \frac{24}{127} a^{2} - \frac{11}{254} a + \frac{109}{254}$, $\frac{1}{1428484150375528851680630618304765751227705986} a^{19} + \frac{1143629755374618200170468244496770811516384}{714242075187764425840315309152382875613852993} a^{18} - \frac{107058448241594503675249927377179268559725243}{1428484150375528851680630618304765751227705986} a^{17} - \frac{59202119343215325690978916256618813258651785}{1428484150375528851680630618304765751227705986} a^{16} - \frac{20866007674666887037542752182562987559338873}{714242075187764425840315309152382875613852993} a^{15} + \frac{567415776012349657079414947602319668499331149}{1428484150375528851680630618304765751227705986} a^{14} - \frac{673129876459483214731199154551871410207714547}{1428484150375528851680630618304765751227705986} a^{13} + \frac{343910214663466507852614060687781881875217985}{714242075187764425840315309152382875613852993} a^{12} - \frac{396461922711687495566852665206489311101553191}{1428484150375528851680630618304765751227705986} a^{11} + \frac{172921685914487145965906553184713065702619743}{1428484150375528851680630618304765751227705986} a^{10} + \frac{524952635949253224875689719755231457170136551}{1428484150375528851680630618304765751227705986} a^{9} + \frac{219095359957952516420261009630140152368051405}{1428484150375528851680630618304765751227705986} a^{8} - \frac{350951191283308878557461061812165554363084583}{1428484150375528851680630618304765751227705986} a^{7} + \frac{334614722542468459623060971423288507707579771}{1428484150375528851680630618304765751227705986} a^{6} - \frac{385305511653473816617842017186316417679299103}{1428484150375528851680630618304765751227705986} a^{5} + \frac{667600930249230014775499287902532388348703753}{1428484150375528851680630618304765751227705986} a^{4} + \frac{213204672806166014833971034052352432535694249}{714242075187764425840315309152382875613852993} a^{3} - \frac{452078216982958129327069539634776587155877485}{1428484150375528851680630618304765751227705986} a^{2} - \frac{212616306356209298199578774281277380416953603}{714242075187764425840315309152382875613852993} a + \frac{614673810412449859220590616888684347161273153}{1428484150375528851680630618304765751227705986}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2870686346.34 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 104 conjugacy class representatives for t20n693 are not computed |
| Character table for t20n693 is not computed |
Intermediate fields
| 10.10.960472390437121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 293 | Data not computed | ||||||