Normalized defining polynomial
\( x^{20} - 4 x^{19} - 28 x^{18} + 107 x^{17} + 275 x^{16} - 887 x^{15} - 1757 x^{14} + 2953 x^{13} + 10339 x^{12} - 9144 x^{11} - 22883 x^{10} - 14527 x^{9} + 96743 x^{8} - 14161 x^{7} - 136209 x^{6} + 79301 x^{5} + 54262 x^{4} - 41964 x^{3} - 12243 x^{2} + 8566 x + 2284 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5092151360596147886766002500000000=-\,2^{8}\cdot 5^{10}\cdot 1093^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 1093$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{8} - \frac{1}{10} a^{7} - \frac{1}{10} a^{6} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{2} a + \frac{2}{5}$, $\frac{1}{10} a^{13} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{10} a^{8} + \frac{1}{10} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{10} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{10} a^{14} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{10} a^{9} + \frac{1}{10} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{10} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{20} a^{15} - \frac{1}{20} a^{14} - \frac{1}{20} a^{13} - \frac{1}{10} a^{11} + \frac{7}{20} a^{10} - \frac{1}{5} a^{9} + \frac{1}{10} a^{8} - \frac{1}{20} a^{7} + \frac{1}{5} a^{6} - \frac{1}{2} a^{5} + \frac{3}{20} a^{4} - \frac{9}{20} a^{3} + \frac{3}{20} a^{2} + \frac{1}{5} a$, $\frac{1}{100} a^{16} - \frac{1}{100} a^{15} + \frac{1}{100} a^{14} - \frac{1}{25} a^{13} - \frac{1}{25} a^{12} - \frac{3}{100} a^{11} - \frac{11}{50} a^{10} + \frac{9}{50} a^{9} - \frac{41}{100} a^{8} - \frac{11}{25} a^{7} + \frac{1}{25} a^{6} - \frac{19}{100} a^{5} - \frac{7}{100} a^{4} - \frac{29}{100} a^{3} + \frac{7}{50} a^{2} + \frac{7}{25} a - \frac{9}{25}$, $\frac{1}{200} a^{17} - \frac{1}{200} a^{16} - \frac{1}{50} a^{15} - \frac{9}{200} a^{14} + \frac{1}{200} a^{13} - \frac{3}{200} a^{12} + \frac{9}{100} a^{11} - \frac{7}{200} a^{10} + \frac{19}{200} a^{9} - \frac{7}{100} a^{8} + \frac{39}{200} a^{7} + \frac{61}{200} a^{6} - \frac{47}{200} a^{5} - \frac{17}{100} a^{4} + \frac{99}{200} a^{3} - \frac{77}{200} a^{2} + \frac{37}{100} a - \frac{1}{2}$, $\frac{1}{65600} a^{18} + \frac{17}{16400} a^{17} - \frac{67}{65600} a^{16} + \frac{1479}{65600} a^{15} - \frac{9}{4100} a^{14} - \frac{121}{8200} a^{13} - \frac{413}{65600} a^{12} - \frac{15543}{65600} a^{11} + \frac{12387}{32800} a^{10} - \frac{99}{320} a^{9} - \frac{18933}{65600} a^{8} + \frac{2429}{32800} a^{7} + \frac{4293}{32800} a^{6} + \frac{18169}{65600} a^{5} + \frac{21121}{65600} a^{4} + \frac{203}{6560} a^{3} - \frac{969}{2624} a^{2} - \frac{6963}{32800} a + \frac{7101}{16400}$, $\frac{1}{6807677046753088956554717449600} a^{19} - \frac{6238631574188889734925551}{1361535409350617791310943489920} a^{18} - \frac{2438086395723783762685924527}{6807677046753088956554717449600} a^{17} + \frac{7739114062916651643263497901}{1701919261688272239138679362400} a^{16} + \frac{8430347126226485840191806331}{1361535409350617791310943489920} a^{15} - \frac{26746470731300972364425129673}{850959630844136119569339681200} a^{14} + \frac{311694165872504746279383651323}{6807677046753088956554717449600} a^{13} - \frac{58047101215465548944170912117}{1701919261688272239138679362400} a^{12} - \frac{1240246891542485704399686294609}{6807677046753088956554717449600} a^{11} - \frac{3027091160022226888486108877121}{6807677046753088956554717449600} a^{10} - \frac{833691798391882603336018098967}{1701919261688272239138679362400} a^{9} + \frac{3327528121698902811225311035333}{6807677046753088956554717449600} a^{8} + \frac{388406148495847680657028354849}{1701919261688272239138679362400} a^{7} + \frac{700033385158464832977371865907}{6807677046753088956554717449600} a^{6} + \frac{1455049674291085100710159674917}{3403838523376544478277358724800} a^{5} - \frac{74893312077670321255401984809}{272307081870123558262188697984} a^{4} - \frac{1009723139170994521847632249091}{6807677046753088956554717449600} a^{3} - \frac{768465027358080470990973715287}{6807677046753088956554717449600} a^{2} - \frac{580804641883947673572125552809}{3403838523376544478277358724800} a - \frac{160606120349246208424543558071}{340383852337654447827735872480}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13569875145.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.1194649.1, 10.10.4459956978753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1093 | Data not computed | ||||||