Normalized defining polynomial
\( x^{20} - 10 x^{19} + 14 x^{18} + 124 x^{17} - 519 x^{16} - 24 x^{15} + 4374 x^{14} - 3205 x^{13} - 15774 x^{12} + 3289 x^{11} + 46166 x^{10} + 56516 x^{9} - 229286 x^{8} - 661698 x^{7} - 274432 x^{6} + 772487 x^{5} + 1089529 x^{4} + 549299 x^{3} + 80270 x^{2} - 15797 x - 2333 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4717154733296640478520170220486763971=-\,11^{17}\cdot 1451^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 1451$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{8194100314010937526649680082150996757773509687556592962069} a^{19} + \frac{2508649538828747074675102248852475718872557725593080926855}{8194100314010937526649680082150996757773509687556592962069} a^{18} + \frac{3157786092677640006851746750075874848590878619458535770012}{8194100314010937526649680082150996757773509687556592962069} a^{17} - \frac{761213075417669914442933567475797795628834051038404744986}{8194100314010937526649680082150996757773509687556592962069} a^{16} + \frac{2703533829494302794778381096786847920789108511314884549140}{8194100314010937526649680082150996757773509687556592962069} a^{15} - \frac{1461162520881031306335176181220744908019748750293585034001}{8194100314010937526649680082150996757773509687556592962069} a^{14} - \frac{2719106282640793551163615213370330373022316847060823170104}{8194100314010937526649680082150996757773509687556592962069} a^{13} - \frac{1122037022575307979967241132230093924520811896393176249446}{8194100314010937526649680082150996757773509687556592962069} a^{12} + \frac{1902848912992520891050670082012994665654913122568533607136}{8194100314010937526649680082150996757773509687556592962069} a^{11} + \frac{2792570337933323602045369651071769136224891711653630500064}{8194100314010937526649680082150996757773509687556592962069} a^{10} - \frac{804991851306077517697726046456543210136438804364752163162}{8194100314010937526649680082150996757773509687556592962069} a^{9} - \frac{1304580538787916533906538617246657882314018910350683843332}{8194100314010937526649680082150996757773509687556592962069} a^{8} + \frac{2949619843355974642441263462844804219993718487168923040413}{8194100314010937526649680082150996757773509687556592962069} a^{7} + \frac{4047014674078999572567866415891244740975592980590436843942}{8194100314010937526649680082150996757773509687556592962069} a^{6} - \frac{1630184665142347527097809359386420498873534014436063582442}{8194100314010937526649680082150996757773509687556592962069} a^{5} + \frac{990939683559788845317151243109545327328074174299459064472}{8194100314010937526649680082150996757773509687556592962069} a^{4} + \frac{396696830953163279962008628511959319147102950161827690170}{8194100314010937526649680082150996757773509687556592962069} a^{3} + \frac{3336459610595252095152038360721286128142321155775277760204}{8194100314010937526649680082150996757773509687556592962069} a^{2} + \frac{208117697917054759765032768870209779650224898736023028097}{8194100314010937526649680082150996757773509687556592962069} a + \frac{3249593483295195402595194575418020096882506458113053693052}{8194100314010937526649680082150996757773509687556592962069}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 90982181599.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 80 conjugacy class representatives for t20n326 are not computed |
| Character table for t20n326 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.451311402416281.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 1451 | Data not computed | ||||||